低价购买(LIS方案统计)
题意:https://www.luogu.com.cn/problem/P1108
如果两个数列组成的数字完全相同,那我们说这两个数列相同。
求出最长下降子序列的方案数。
题解来自 wjyyy大神。
在dp过程中,f数组存的是最长下降子序列的长度,ff数组的下标i是以i结尾的意思,所以最长下降子序列(除了最后一位外)的数据已经丢失,因此不能在方案数相加时再判断是否能加。
我们从头来看,
- 如果一个数列的第一个数与另一个数列的第一个数相同,那么现在可以判断它们相等,即可以把其中一个删掉(在代码中的处理是t [ j ] =0)。当不同的数接在它的后面时,又可以将它们判断为两个数列,这是不互相影响的。因为两个数列都可以由这个相等的数列转移而来
- 如果一个数列的第一个数与另一个数列的第一个数不同,那么它们不等,且无论后面添加什么,都不相等,即不删去,则按照普通的判断继续做。
由上面的两点,我们已经把重复的删掉,这样可以防止重复计数。
#include <bits/stdc++.h>
using namespace std;
#define max(a,b) (a>b?a:b)
int a[],f[],t[];
//a[i]是题目给的股票价格,f[i]是第i天最长的长度
//t[i]是以i结尾的方案
int main()
{
int n,maxn=;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i],f[i]=;
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
if(a[i]<a[j])
f[i]=max(f[i],f[j]+);
}//目前是正常求最长下降子序列
maxn=max(maxn,f[i]);//记下最长的长度
for(int j=;j<i;j++)
{
if(f[i]==f[j]&&a[i]==a[j])//一样长而且数列完全一样
t[j]=;
else if(f[i]==f[j]+&&a[i]<a[j])//可以接上前面的
t[i]+=t[j];
}
if(!t[i]) t[i]=;//为了后面的数转移
}
int ans=;
for(int i=;i<=n;i++)
if(f[i]==maxn) ans+=t[i];
cout<<maxn<<" "<<ans;
}
低价购买(LIS方案统计)的更多相关文章
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 低价购买 (动态规划,变种最长下降子序列(LIS))
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- P1108 低价购买——最长下降子序列+方案数
P1108 低价购买 最长下降子序列不用多讲:关键是方案数: 在求出f[i]时,我们可以比较前面的f[j]; 如果f[i]==f[j]&&a[i]==a[j] 要将t[j]=0,去重: ...
- poj1952 BUY LOW, BUY LOWER[线性DP(统计不重复LIS方案)]
如题.$N \leqslant 5000$. 感觉自己思路永远都是弯弯绕绕的..即使会做也会被做繁掉..果然还是我太菜了. 递减不爽,先倒序输入算了.第一问做个LIS没什么说的.第二问统计个数,考虑什 ...
- 洛谷 P1108 低价购买 解题报告
P1108 低价购买 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买&quo ...
- 洛谷 P1108 低价购买
P1108 低价购买 标签 动态规划 难度 提高+/省选- 题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:& ...
- P1108 低价购买(DP)
题目描述 "低价购买"这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:"低价购买:再低价购买".每次你购买一支股 ...
- 洛谷P1108 低价购买
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 【洛谷P1108】低价购买
低价购买 题目链接 n<=5000 n^2的算法是可以接受的 第一个数字显然是求最长下降子序列,可以n^2或nlognDP 要求方案数,可以在n^2算法中做一些修改,DP求方案数 dp[i]表示 ...
随机推荐
- AJ学IOS 之第一次打开Xcode_git配置,git简单学习
AJ分享,必须精品 一:错误 当第一次打开Xcode我们进行commit操作的时候会报错: The working copy “测试” failed to commit files. * Please ...
- 【Java】WrapperClass 包装类
什么是包装类? 写写我的想法 就是对于对象和基本类型的无法匹配和强转,基本类型在面向对象的实例类型中,反而成了个特殊的数据类型的存在 在一些特定的情况,我们希望通过对象的方式去处理数据,但是基本类型的 ...
- openssl进行RSA加解密(C++)
密钥对根据RSA的加密机制(自行查找RSA工作原理),通常可以私钥加密-公钥解密(多用于签名),公钥加密-私钥解密(多用于数据传输加密),私钥可以生成公钥. 密钥对生成生成私钥,长度为2048,默认格 ...
- sudo -s 命令 [oh-my-zsh] 提示检测到不安全目录
运行sudo -s 命令时,[oh-my-zsh] 冒出下面一大堆提示: [oh-my-zsh] Insecure completion-dependent directories detected: ...
- Epicor RoHS Overview
Epicor ERP具有一个旨在帮助符合指令2002/95/EC (RoHS1) and 2011/65/EU (RoHS2)的模块,特别适用于医疗设备公司. 不合格的依据是–最大浓度值和合格声明/ ...
- 数据结构(C语言版)---二叉树
1.二叉树:任意一个结点的子结点个数最多两个,且子结点的位置不可更改,二叉树的子树有左右之分. 1)分类:(1)一般二叉树(2)满二叉树:在不增加树的层数的前提下,无法再多添加一个结点的二叉树就是满二 ...
- 1. jquery插件手机
1. http://jqtjs.com/preview/demos/main/index.html#home2. jquery weUI ===== 插件:https://blog.csdn.net/ ...
- 详解PHP反序列化中的字符逃逸
首发先知社区,https://xz.aliyun.com/t/6718/ PHP 反序列化字符逃逸 下述所有测试均在 php 7.1.13 nts 下完成 先说几个特性,PHP 在反序列化时,对类中不 ...
- [YII2.0] 高级模板简单安装教程
YIICHINA官网教程就很完善:http://www.yiichina.com/tutorial/692 但是在yii2框架安装运行init.bat报错php.exe不是内部或外部命令, 解决办法: ...
- 好用的反向代理工具NATAPP
这里推荐一个好用的反向代理工具NATAPP NATAPP1分钟快速新手图文教程 有免费的和付费的个人建议付费的,免费还需要身份证验证,付费版最低9元/月,看个人需求! 这里给个邀请码贴在这需要的话可以 ...