前言

在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的。在小论文中主要研究了关于词性POS对输入序列的注意力机制。同时对比实验采取的是words的self-attention机制。

效果

下图主要包含两列:word_attention是self-attention机制的模型训练结果,POS_attention是词性模型的训练结果。

可以看出,相对于word_attention,POS的注意力机制不仅能够捕捉到评价的aspect,也能根据aspect关联的词借助情感语义表达的词性分布,care到相关词性的情感词。

核心代码

可视化样例

# coding: utf-8
def highlight(word, attn):
html_color = '#%02X%02X%02X' % (255, int(255*(1 - attn)), int(255*(1 - attn)))
return '<span style="background-color: {}">{}</span>'.format(html_color, word) def mk_html(seq, attns):
html = ""
for ix, attn in zip(seq, attns):
html += ' ' + highlight(
ix,
attn
)
return html + "<br>" from IPython.display import HTML, display
batch_size = 1
seqs = [["这", "是", "一个", "测试", "样例", "而已"]]
attns = [[0.01, 0.19, 0.12, 0.7, 0.2, 0.1]] for i in range(batch_size):
text = mk_html(seqs[i], attns[i])
display(HTML(text))

接入model

需要在model的返回列表中,添加attention_weight的输出,理论上维度应该和输入序列的长度是一致的。

# load model
import torch
# if you train on gpu, you need to move onto cpu
model = torch.load("../docs/model_chk/2018-11-07-02:45:37", map_location=lambda storage, location: storage) from torch.autograd import Variable
for batch_idx, samples in enumerate(test_loader, 0):
v_word = Variable(samples['word_vec'])
v_final_label = samples['top_label'] model.eval()
final_probs, att_weight = model(v_word, v_pos) batch_words = toWords(samples["word_vec"].numpy(), idx_word) # id转化为word
batch_att = getAtten(batch_words, att_weight.data.numpy()) # 去除padding词,根据words的长度截取attention
labels = toLabel(samples['top_label'].numpy()) # 真实标签
pre_labels = toLabel(final_probs.data.numpy() >= 0.5) # 预测标签 for i in range(len(batch_words)):
text = mk_html(batch_words[i], batch_att[i])
print(labels[i], pre_labels[i])
display(HTML(text))

总结

  • 建议把可视化独立出来,用jupyter-notebook编辑,方便分段调试和copy;同时因为是借助html渲染的,所以需要notebook
  • 项目代码我后期后同步到github上,欢迎一起交流

如何可视化深度学习网络中Attention层的更多相关文章

  1. 深度学习网络中numpy多维数组的说明

    目前在计算机视觉中应用的数组维度最多有四维,可以表示为 (Batch_size, Row, Column, Channel) 以下将要从二维数组到四维数组进行代码的简单说明: Tips: 1) 在nu ...

  2. 利用Tengine在树莓派上跑深度学习网络

    树莓派是国内比较流行的一款卡片式计算机,但是受限于其硬件配置,用树莓派玩深度学习似乎有些艰难.最近OPENAI为嵌入式设备推出了一款AI框架Tengine,其对于配置的要求相比传统框架降低了很多,我尝 ...

  3. <深度学习优化策略-3> 深度学习网络加速器Weight Normalization_WN

    前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN). ...

  4. 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?——我自己是因为data有nan的坏数据,clear下解决

    from:https://www.zhihu.com/question/49346370   Harick     梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入n ...

  5. 【神经网络与深度学习】chainer边运行边定义的方法使构建深度学习网络变的灵活简单

    Chainer是一个专门为高效研究和开发深度学习算法而设计的开源框架. 这篇博文会通过一些例子简要地介绍一下Chainer,同时把它与其他一些框架做比较,比如Caffe.Theano.Torch和Te ...

  6. 寻找下一款Prisma APP:深度学习在图像处理中的应用探讨(阅读小结)

    原文链接:https://yq.aliyun.com/articles/61941?spm=5176.100239.bloglist.64.UPL8ec 某会议中的一篇演讲,主要讲述深度学习在图像领域 ...

  7. 自己动手实现深度学习框架-7 RNN层--GRU, LSTM

    目标         这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent U ...

  8. caffe深度学习网络(.prototxt)在线可视化工具:Netscope Editor

    http://ethereon.github.io/netscope/#/editor 网址:http://ethereon.github.io/netscope/#/editor 将.prototx ...

  9. 深度学习网络压缩模型方法总结(model compression)

    两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...

随机推荐

  1. VirtualBox 版本 6.1.2 r135662, ubuntu18 配置共享文件夹、openssh-server

    续上章安装完ubuntu18. 输入账号密码,登录成功. 但是使用ssh工具,却登录失败. 1.安装openssh-server sudo apt install openssh-server 2.检 ...

  2. FormDataBodyPart获取表单文件名乱码解决方法

    FormDataMultiPart formData=; FormDataBodyPart filePart=; filePart.getFormDataContentDisposition().ge ...

  3. PS2手柄在arduino上进行测试,可用,供喜欢diy的朋友借鉴

    #include <PS2X_lib.h> //PS2手柄PS2X ps2x; // create PS2 Controller Class//////////PS2引脚///////// ...

  4. 解决使用requests_html模块,req.html.render()下载chromium速度慢问题

    1.第一步,代码如下: from requests_html import HTMLSession url="https://www.baidu.com/" headers={ & ...

  5. Faiss向量相似性搜索

    Faiss 快速入门(1) Faiss 更快的索引(2) Faiss低内存占用(3) Faiss 构建: clustering, PCA, quantization(4) 如何选择Faiss索引(5)

  6. 事务框架之声明事务(自动开启,自动提交,自动回滚)Spring AOP 封装

    利用Spring AOP 封装事务类,自己的在方法前begin 事务,完成后提交事务,有异常回滚事务 比起之前的编程式事务,AOP将事务的开启与提交写在了环绕通知里面,回滚写在异常通知里面,找到指定的 ...

  7. Mongodb中 数据库和集合的创建与删除

    1.查询数据库,查询表: show dbs //查询所有的数据库show collections //查询所有的集合(表) 2.创建数据库或切换到数据库(存在就切换,不存在就创建) use spide ...

  8. css过渡和2d详解及案例

    css过渡和2d详解及案例(案例在下方,不要着急) 本文重点: 1.在2D变化使用过程中,有些需求需要两种或两种以上的变化同时使用, 值得注意的是尽量把位移变化放在最前面,把其他变化放在最后面,属性值 ...

  9. 实践指路明灯,源码剖析flink-metrics

    1. 通过上期的分享,我们对 Metrics 类库有了较深入的认识,并对指标监控的几个度量类型了如指掌. 本期,我们将走进当下最火的流式处理框架 flink 的源码,一同深入并学习一下别人家的代码. ...

  10. qW3xT.2,解决挖矿病毒

    在阿里云使用redis,开启了6379端口,但是当时并没有对redis的密码进行设置. 在晚上一点左右.阿里云给我发短信,告诉我服务器出现紧急安全事件.建议登录云盾-态势感知控制台查看详情和处理. 于 ...