sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归
#二分类逻辑回归算法改造适用于多分类问题
1、对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改造方式有两大类:
(1)OVR/A(One VS Rest/ALL)
(2)OVO(One VS One)
2、对于OVR的改造方式,主要是指将多个分类结果(假设为n)分成是其中一种分类结果的和(其他),这样便可以有n种分类的模型进行训练,最终选择得分最高的的(预测率最高的的)便为分类结果即可。它所训练的时间是原来分类时间的n倍
图1
3、对于OVO的方式,主要是将n个数据分类结果任意两个进行组合,然后对其单独进行训练和预测,最终在所有的预测种类中比较其赢数最高的即为分类结果,这样的分类方式最终将训练分为n(n-1)/2个模型,计算时间相对较长,不过这样的方式每次训练各个种类之间不混淆也不影响,因此比较准确。
图2
4、sklearn中含有将逻辑回归进行多分类的函数封装,可以直接进行调用,当然也可以自己进行底层实现,都是比较方便的。在sklearn中实现逻辑回归的多分类任务具体实现代码如下所示:
#OVR-OVO改造二分类算法实现多分类方式
import numpy as np
import matplotlib.pyplot as plt
def plot_decision_boundary(model,axis): #两个数据特征基础下输出决策边界函数
x0,x1=np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1,1)
)
x_new=np.c_[x0.ravel(),x1.ravel()]
y_pre=model.predict(x_new)
zz=y_pre.reshape(x0.shape)
from matplotlib.colors import ListedColormap
cus=ListedColormap(["#EF9A9A","#FFF59D","#90CAF9"])
plt.contourf(x0,x1,zz,cmap=cus) #采用iris数据集的两个数据特征进行模型训练与验证
from sklearn import datasets
d=datasets.load_iris()
x=d.data[:,:2] #选取特征数据集的前两个数据特征,方便输出决策出边界进行训练结果的对比
y=d.target
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.linear_model import LogisticRegression #OVR方式的调用-默认方式
log_reg=LogisticRegression() #不输入参数时,默认情况下是OVR方式
log_reg.fit(x_train,y_train)
print(log_reg.score(x_test,y_test))
plot_decision_boundary(log_reg,axis=[4,9,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.scatter(x[y==2,0],x[y==2,1],color="b")
plt.show() #OVO的方式进行逻辑回归函数参数的定义,结果明显好于OVR方式
log_reg1=LogisticRegression(multi_class="multinomial",solver="newton-cg")
log_reg1.fit(x_train,y_train)
print(log_reg1.score(x_test,y_test))
plot_decision_boundary(log_reg1,axis=[4,9,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.scatter(x[y==2,0],x[y==2,1],color="b")
plt.show() #采用iris数据的所有特征数据
x=d.data
y=d.target
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.linear_model import LogisticRegression #OVR方式的调用-默认胡方式
log_reg=LogisticRegression() #不输入参数时,默认情况下是OVR方式
log_reg.fit(x_train,y_train)
print(log_reg.score(x_test,y_test)) #采用OVO的方式进行逻辑回归函数参数的定义,结果明显好于OVR方式
log_reg1=LogisticRegression(multi_class="multinomial",solver="newton-cg")
log_reg1.fit(x_train,y_train)
print(log_reg1.score(x_test,y_test)) 实现结果如下所示:
sklearn实现多分类逻辑回归的更多相关文章
- 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 3—多分类逻辑回归和神经网络
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCo ...
- 使用sklearn和caffe进行逻辑回归 | Brewing Logistic Regression then Going Deeper
原文首发于个人博客https://kezunlin.me/post/c50b0018/,欢迎阅读! Brewing Logistic Regression then Going Deeper. Bre ...
- python——sklearn完整例子整理示范(有监督,逻辑回归范例)(原创)
sklearn使用方法,包括从制作数据集,拆分数据集,调用模型,保存加载模型,分析结果,可视化结果 1 import pandas as pd 2 import numpy as np 3 from ...
- 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...
- 机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)
机器学习二 逻辑回归作业 作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57 ...
- tensorflow之逻辑回归模型实现
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- 随机逻辑回归random logistic regression-特征筛选
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- 【机器学习】逻辑回归(Logistic Regression)
注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害 ...
随机推荐
- Nexus 3048的NX-OS升级方法
1.System Software和Kick Start 与普通IOS设备不同,NX OS升级时,共有2个文件需要升级.安装,如果只安装其中一个,可能会导致设备重启后无法进入系统.这2个文件包括: N ...
- SSL 证书格式普及,PEM、CER、JKS、PKCS12
根据不同的服务器以及服务器的版本,我们需要用到不同的证书格式,就市面上主流的服务器来说,大概有以下格式: .DER .CER,文件是二进制格式,只保存证书,不保存私钥. .PEM,一般是文本格式,可保 ...
- mcast_set_if函数
#include <errno.h> #include <string.h> #include <net/if.h> #include <sys/ioctl. ...
- php cli 下 php.ini 配置
// 查看phpcli 模式下 扩展 php -m // 查看php cli 版本 php -v 查看命令行的ini路径,命令行下运行 php --ini Loaded Configuration F ...
- word2vec生成后缀名model文件处理
引入from gensim.models import word2vec 读取test02.model里面的词· model = word2vec.Word2Vec.load('test02.mode ...
- UIKit框架使用总结--看看你掌握了多少
一.经常使用的,基本就是每次项目迭代都需要使用的 UIView.UILabel.UIImage.UIColor.UIFont.UIImageView.UITextField.UIButton. UIS ...
- Python 使用pillow 操作图像
文档:https://pillow.readthedocs.io/en/stable/index.html 计算机图像基础 颜色和RGBA值 计算机程序通常将图像中的颜色表示为 RGBA 值.RGBA ...
- 5-2 使用antDesign的Table 及 modal(对话情景框) 功能
1,进入antDesign官网,粘贴table代码 2,看代码各个部分实现什么功能,根据需求改代码 表格类似如下: 代码如下: const columns = [ { title: 'Name', d ...
- 8 HTML DOM 元素的查找与改变&改变CSS样式&HTML事件
HTML DOM(Document Object Model)文档对象模型 当网页被加载时,浏览器会创建页面的文档对象模型. HTMLDOM 定义了用于HTML的一系列标准的对象.通过DOM,你可以访 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 网格系统实例:列排序
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...