一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS)
例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度,
需要一个额外的数组 LIS 来记录
长度从1 到 n 慢慢变长求解的过程中 对应长度的 最长递增子序列的最小的末尾元素
解决方法
长度为1时 {3}:
将3放入LIS中,表示长度为1的时候,{3}数组的最长递增子序列的最小微元素
LIS:{3}
只有一个元素,所以 最长递增子序列就是 {3},最长递增子序列的最小尾元素 就是3
长度为2时 {3,1}:
新加入的元素1<3 长度增加变成2时,新加入的元素1比长度为1的时候的 最长递增子序列的最小尾元素还小,所以新加入元素1不会引起最长递增子序列变长,所以需要将1 插入 LIS中,在LIS中找到最小的比1大的元素,替换该元素,完成长度为2 的时候 最长递增子序列的寻找,
LIS:{1}
1替换掉3 表示 在长度为2的时候{3,1}的最长递增子序列的最小尾元素是1,验证 最长递增子序列{1}或{3}
长度为3时 {3,1,4}:
新加入的元素4>1,新加入的元素,比长度为2时的最长递增序列的最小尾元素大,说明新加入元素可以引起最长递增序列的增长,加入新元素4得:
LIS:{1,4}
验证 最长递增序列 {3,4} 或者 {1,4}
长度为4时 {3,1,4,2}:
新加入元素2<4, 比长度为3时的最长递增子序列的最小尾元素小,说明不引起最长递增序列的增长,需要在LIS中找到替换的元素 找到第一个比2大的元素4替换,这样在保证递增序列数量不变的情况下,将递增序列的范围往小值方向移动。得
LIS:{1,2}
验证 最长递增序列 {3,4} 或者 {1,2}
长度为5时 {3,1,4,2,3}:
新加入元素3>2, 比长度为4时的最长递增子序列的最小尾元素大,说明引起最长递增序列的增长,得
LIS:{1,2,3}
验证 最长递增序列 {1,2,3}
长度为6时 {3,1,4,2,3,9}:
新加入元素9>3, 比长度为5时的最长递增子序列的最小尾元素大,说明引起最长递增序列的增长,得
LIS:{1,2,3,9}
验证 最长递增序列 {1,2,3,9}
长度为7时 {3,1,4,2,3,9,4}:
新加入元素4<9, 比长度为3时的最长递增子序列的最小尾元素小,说明不引起最长递增序列的增长,需要在LIS中找到替换的元素 找到第一个比4大的元素9替换,这样在保证递增序列数量不变的情况下,将增序列的范围往小值方向移动。得
LIS:{1,2,3,4}
验证 最长递增序列 {1,2,3,4}
长度为8时 {3,1,4,2,3,9,4,6}:
新加入元素6>4, 比长度为7时的最长递增子序列的最小尾元素大,说明引起最长递增序列的增长,得
LIS:{1,2,3,4,6}
验证 最长递增序列 {1,2,3,4,6}
需要注意:
LIS保存的是 求解的过程中 对应长度的 最长递增子序列的最小的末尾元素 不一定就是最长递增序列原来的序列
插入新元素寻找替换位置的时候 有序查找可以使用二分查找 时间复杂度 o(LogN)
所以该解决方法的时间复杂度NlogN
空间复杂度 N
一个数组求其最长递增子序列(LIS)的更多相关文章
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
- 最长递增子序列 LIS 时间复杂度O(nlogn)的Java实现
关于最长递增子序列时间复杂度O(n^2)的实现方法在博客http://blog.csdn.net/iniegang/article/details/47379873(最长递增子序列 Java实现)中已 ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 编程之美 set 7 求数组中的最长递增子序列
解法 1. 假设在目标数组 array[] 的前 i 个元素中, 最长递增子序列的长度为 LIS[i] 那么状态转移方程为 LIS[i] = max(1, LIS[k]+1) array[i+1] & ...
- 最长递增子序列LIS再谈
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d( ...
- 算法面试题 之 最长递增子序列 LIS
找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E ...
随机推荐
- JUC并发编程基石AQS之主流程源码解析
前言 由于AQS的源码太过凝练,而且有很多分支比如取消排队.等待条件等,如果把所有的分支在一篇文章的写完可能会看懵,所以这篇文章主要是从正常流程先走一遍,重点不在取消排队等分支,之后会专门写一篇取消排 ...
- 手机app测试用例怎么写?手机app测试点有哪些?只有干货没有水分,错过绝对后悔!
一.前言 在当今竞争激烈的市场上一个APP的成功离不开一个可靠的测试工程师.因此,对功能和用户体验有特殊关注的App进行全面测试是必不可少的.如何做到测试用例的百分百覆盖一直是测试用例编写过程中 ...
- [Abp vNext 入坑分享] - 4.JWT授权的接入
一.感想 在写这一系列文章之前,本来以为写这个之前已经搭建好的框架描述会比较简单,但是慢慢写下来才发现.写这个真的不简单额,本来以为图文一起,一个晚上应该能输出一篇吧...结果:现实真的骨感,一个星期 ...
- 20199308《Linux内核原理与分析》第十一周作业
缓冲区溢出漏洞实验 实验步骤 一.初始设置 1.Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难, ...
- Linux系统介绍与环境搭建准备
1 什么是操作系统? 操作系统,Operating System,简称OS,是计算机系统中必不可少的基础软件,它是应用程序运行以及用户操作必备的基础环境支撑,是计算机系统的核心. 操作系统的作用是 ...
- 解决material UI中弹窗(dialog、popover等)内容被遮挡问题
在material ui中有几种弹出层,比如:dialog.popover等,这些弹出层都会遇到的一个公共问题是: 假如弹出层中的内容变化了,弹出层的位置并不会重新定位. 这样,假如一开始弹出层定位在 ...
- 工具 在 Nuget 发布自己的包
MSDN : https://docs.microsoft.com/zh-cn/nuget/quickstart/create-and-publish-a-package-using-visual-s ...
- 《Arduino实战》——2.4 反应速度计:谁真正拥有最快的反应时间
本节书摘来异步社区<Arduino实战>一书中的第2章,第2.4节,作者:[美]Martin Evans ,Joshua Noble ,Jordan Hochenbaum,更多章节内容可以 ...
- tomcat项目迁移,无法访问,报“404”错误,原因分析
首先,导出项目文件和MySQL数据库(项目文件直接tar&&cp:数据库直接mysqldump生成sql文件) 再,进行导入步骤,项目文件拷贝到webapps下,并赋予bin相关文件执 ...
- Mysql 开窗函数实战
Mysql 开窗函数实战 Mysql 开窗函数在Mysql8.0+ 中可以得以使用,实在且好用. row number() over rank() over dense rank() ntile() ...