poj 1330 Nearest Common Ancestors 求最近祖先节点
Nearest Common Ancestors
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 37386 | Accepted: 18694 |
Description
In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
题意:输入t代表有多个测试样例,每个样例第一行输入一个数n,表示有n个节点,接下来n-1行描述这n个节点的关系,第n行输入x,y要求x,y的最近公共祖先
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int N = 1e4 + ;
vector<int> ve[N];//ve[]是用来建表的一个数组
vector<int> que[N];//que[]是用来查询的一个数组
int ans, pre[N], vis[N];//pre[]是节点编号
int t, n;
int find(int x)//查找公共祖先
{
return pre[x] == x ? x : find(pre[x]);//距离x最近的一个没有更新父节点的点(pre[x]=x),就是最近的祖先节点
}
void init()
{
for (int i = ; i <= n; i++)
{
pre[i] = i;//初始化所有节点的父节点为它本身
vis[i] = ;
ve[i].clear();
que[i].clear();
}
} void dfs(int u, int fa)
{
vis[u] = ;//标记表示查询过
for (int i = ; i<ve[u].size(); i++)//借助并查集,在DFS过程中,我们每到达一个节点u,便创建一棵以u为根结点的子树,ve[u].size()就是这个节点子节点的数目
{
int v = ve[u][i];
dfs(v, u);//继续以v为子节点,u为根节点往下遍历到底
}
for (int j = ; j<que[u].size(); j++)//反向遍历,更新遍历过节点的父节点
{
int v = que[u][j];
if (vis[v] == )
{
ans = find(v);
}
}
pre[u] = fa;//更新父节点
} int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);//是节点数目
init();//初始化
int x, y;
for (int i = ; i<n - ; i++) //描述父子关系,建表
{
scanf("%d %d", &x, &y);
ve[x].push_back(y);//父子结点关系,X是父节点,y是子节点
vis[y] = ;//标记所有子节点,只有最顶上的根节点没有做过子节点才不会被标记
}
scanf("%d %d", &x, &y);
que[x].push_back(y);//查询
que[y].push_back(x);
for (int i = ; i <= n; i++)
{
if (vis[i] == )
{
memset(vis, , sizeof(vis));
dfs(i, -);//从根节点开始,因为根节点没有父节点,所以初始为-1
break;
}
}
printf("%d\n", ans);
}
return ;
}
poj 1330 Nearest Common Ancestors 求最近祖先节点的更多相关文章
- POJ 1330 Nearest Common Ancestors(求最近的公共祖先)
题意:给出一棵树,再给出两个节点a.b,求离它们最近的公共祖先.方法一: 先用vector存储某节点的子节点,fa数组存储某节点的父节点,最后找出fa[root]=0的根节点root. 之后 ...
- POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题
A rooted tree is a well-known data structure in computer science and engineering. An example is show ...
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
随机推荐
- C# DataSet与DataTable的区别和用法 ---转载
C# DataSet与DataTable的区别和用法 转载:https://www.cnblogs.com/liuyi-li/p/6340411.html DataSet是数据集,DataTable是 ...
- 用javaweb写一个注册界面,并将数据保存到后台数据库(全部完成)(课堂测试)
一.题目:WEB界面链接数据库 1.考试要求: 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母. ...
- Linux系统资深运维工程师的进阶秘籍
2010年毕业,从事IT行业已经接近7个年头,一路走来有很多不足,不论是技术上的还是工作当中的待人接事等,但正是这些不足让我有了现在的进步,技术上从最初的做水晶头,综合布线到服务器上架,网络设备调试, ...
- android中按back键返回上一个activity,如何重新调用上一个activity的oncreate方法?
默认情况下是不会调用的. @Override public void onBackPressed() { String titleStr = edittitle.getText().toString( ...
- 学习笔记:中国剩余定理(CRT)
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹 ...
- Address localhost:1099 is already in use(IDEA启动Tomcat报错1099 is already in use)
IDEA中启动Tomcat报错,Error running Tomcat7.0.52: Address localhost:1099 is already in use 或者是 java.rmi.se ...
- 4、mysql查询练习
1.创建四个表供查询 (1)学生表—Student 学号 姓名 性别 出生年月日 所在班级 [语句] > create table student( -> sno varchar(20) ...
- Java得到一个整数的绝对值,不使用任何判断和比较语句,包括API.
/** * Java得到一个整数的绝对值,不使用任何判断和比较语句,包括API. <br> * 1.不得使用任何API,如Math.abs()等.<br> * 2.不得使用判断 ...
- Java设计模式之适配器模式(Adapter)
通常,在代码已经存在的情况下编写客户端代码(客户端就是需要调用我们代码的对象),开发人员可以采取模拟客户端的方式调用我们提供的接口对象.然而,客户端代码也可能与你的代码单独进行开发,这种情况下,会发现 ...
- 请求http协议分析- (mysql-thinkphp) (5)
http协议 https://tools.ietf.org/pdf/rfc7231.pdf https://www.w3.org/Protocols/ ======================== ...