疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree
定理:
1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵。
2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度。
即:
3.对于矩阵C而言,C表示两点之间是否存在边,当i==j时为一点无边可言为0,即:
4.定义基尔霍夫矩阵J为度数矩阵D-邻接矩阵C,即J=D-C;
5.G图生成树的数量为任意矩阵J的N-1阶主子式的行列式的绝对值。
证明:
伪证明,不是证明基尔霍夫定理,而是讲一下原理,证明超过我们所需要使用的范畴。
首先明确一点就是若图G是一颗树,他的基尔霍夫矩阵的N-1阶行列式的值1;因为是一棵树,所以不含有环,且两点之间就只有一条边相连,任意列任意行只有1,且度数矩阵与之对应密切,一个点的度数只和自己的变数有关,且不与其他边相连,度数和为2*N,边数为N,且能通过高斯消元化为上三角行列式,即讨论J矩阵中能够构成多少个该子树,即为求矩阵N-1阶主子式的行列式,注意任意一个图的J基尔霍夫矩阵的行列式值都为0;
实现方式:
就是求这个行列,行列式求得方法是高斯消元,其实就是将行列式化为上三角行列式,这个那份线性代数里讲的挺清楚的,不要被名字吓到。
bool zero(double a)
{
return a>-eps && a<eps;
}
double Gauss()
{
double mul,Result=1;
int i,j,k,b[n];
for(i=0;i<n;i++) b[i]=i;
for(i=0;i<n;i++){
if(zero(a[b[i]][i]))
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])) { swap(b[i],b[j]); Result*=-1; break; }
Result*=a[b[i]][i];
for(j=i+1;j<n;j++)
if(!zero(a[b[j]][i])){
mul=a[b[j]][i]/a[b[i]][i];
for(k=i;k<n;k++)
a[b[j]][k]-=a[b[i]][k]*mul;
}
}
return Result;
}
疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree的更多相关文章
- 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays
图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- word2vec 中的数学原理二 预备知识 霍夫曼树
主要参考: word2vec 中的数学原理详解 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码. ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- OpenCV中的霍夫线变换和霍夫圆变换
一.霍夫线变换 霍夫线变换是OpenCv中一种寻找直线的方法,输入图像为边缘二值图. 原理: 一条直线在图像二维空间可由两个变量表示, 例如: 1.在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截 ...
- 图论中最优树问题的LINGO求解
树:连通且不含圈的无向图称为树.常用T表示.树中的边称为树枝,树中度为1的顶点称为树叶. 生成树:若T是包含图G的全部顶点的子图,它又是树,则称T是G的生成树. 最小生成树:设T=(V,E1)是赋权图 ...
- ZeroMQ接口函数之 :zmq_z85_decode – 从一个用Z85算法生成的文本中解析出二进制密码
ZeroMQ 官方地址 :http://api.zeromq.org/4-0:zmq_z85_decode zmq_z85_decode(3) ØMQ Manual - ØMQ/4.1 ...
- 使用 FP-growth 算法高效挖掘海量数据中的频繁项集
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...
- 相机标定:关于用Levenberg-Marquardt算法在相机标定中应用
LM算法在相机标定的应用共有三处. (1)单目标定或双目标定中,在内参固定的情况下,计算最佳外参.OpenCV中对应的函数为findExtrinsicCameraParams2. (2)单目标定中,在 ...
随机推荐
- echarts以地图形式显示中国疫情情况实现点击省份下钻
首先要导入对应的包.下钻用到各个省份的json文件等内容导入之后进行相关的操作. 首先是从数据库中读取相应的数据文件.通过list方式.只有在ser出转化为json文件.在jsp页面通过ajax来进行 ...
- IDEA永久激活码获取
废话少说,直接上地址:http://idea.medeming.com/jet/ *小编还是建议,有家底的程序猿还是直接买正版的号,非正版的很多不便的地方~
- windows VMware 安装mac 系统
0x00 下载链接 首先肯定要有镜像: 链接:https://pan.baidu.com/s/190NBRBwNXVOYRxb6nodHeA 提取码:ahq5 然后还得有这个插件: 链接:https: ...
- 美化你的终端利器Iterm2
Iterm2是特别好用的一款终端,支持自定义字体和高亮,让日常开发,充满愉悦. 安装iterm2(mac版) brew tap caskroom/cask brew cask install iter ...
- Numpy学习-(2)
我学习numpy过程的记录 1. 切片和索引 (1) 两种切片方式示例: (2) 多维数组: import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5 ...
- Linux学习笔记(四)帮助命令
帮助命令 man info help --help man 英文原意:format and display the on-line manual pages 功能:显示联机帮助手册 语法:man 选项 ...
- redis: List列表类型(四)
list设置值(头部):lpush list one list设置值(尾部):**rpush ** list one list获取值:lrange list 0 -1 list获取指定范围的值:lra ...
- MySQL优化之COUNT(*)效率(部分转载与个人亲测)
说到MySQL的COUNT(*)的效率,发现越说越说不清楚,干脆写下来,分享给大家. COUNT(*)与COUNT(COL)网上搜索了下,发现各种说法都有:比如认为COUNT(COL)比COUNT(* ...
- MapReduce基本认识
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算. 主要由Split.Map.Partition.Sort.Combine(需要自己写).Merge.Reduce组成,一般来 ...
- 非常简单的string驻留池,你对它真的了解吗
昨天看群里在讨论C#中的string驻留池,炒的火热,几轮下来理论一堆堆,但是在证据提供上都比较尴尬.虽然这东西很基础,但比较好的回答也不是那么容易,这篇我就以我能力范围之内跟大家分享一下 一:无处不 ...