题目描述

对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:

{3} 和 {1,2}

这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:

{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}

{2,5,7} 和 {1,3,4,6}

{3,4,7} 和 {1,2,5,6}

{1,2,4,7} 和 {3,5,6}

给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。

输入输出格式

输入格式:

输入文件只有一行,且只有一个整数N

输出格式:

输出划分方案总数,如果不存在则输出0。

输入输出样例

输入样例#1:

7

输出样例#1:

4

说明

翻译来自NOCOW

USACO 2.2

先是搜索,已经确认了当大于28的时候就超时了,所以搜索算是一种方法,不过可以用搜索打表。然后是递推,搜索是不断地递归,所以通过搜索可以改写出递推来,但是会发现有点像背包,索性写个背包出来。

//DFS
#include<bits/stdc++.h>
using namespace std;
void dfs(int i,int su);
int sum;
int ans;
int n;
int main()
{
cin>>n;
ans=0;
sum=(1+n)*n>>1;
if((sum>>1)*2!=sum)
{
cout<<0<<endl;
return 0;
}
dfs(-1,0);
cout<<(ans>>1)<<endl;
}
void dfs(int i,int su)
{
for(int j=i+1; j<n; j++)
{
if(su+j+1>sum>>1)return ;
if(su+j+1==sum/2){
ans++;
return ;
}
dfs(j,su+j+1);
}
}
//递推
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int sum=(n*(n+1))>>1;
if((sum>>1)<<1!=sum){cout<<0;return 0;}
long long a[(sum>>1)+1];
memset(a,0,sizeof(a));
a[0]=1;
for(int i=1;i<=n;i++)
for(int j=sum/2;j>=i;j--)
a[j]+=a[j-i];
printf("%d\n",a[sum>>1]>>1);
return 0;
}
// 背包
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int M=1e3+5;
LL b[M];
int n;
LL ans;
int main(){
scanf("%d",&n);
int sum=(n*(n+1))>>1;
if((sum>>1)<<1!=sum){cout<<0;return 0;}
for(int i=0;i<(1<<(n/2));++i){
int cur=0;
for(int j=0;(i>>j)>0;++j)if((i>>j)&1)cur+=(j+1);
b[cur]++;
}
for(int i=0;i<(1<<(n-n/2));++i){
int cur=0;
for(int j=0;(i>>j)>0;++j)if((i>>j)&1)cur+=j+n/2+1;
if((1+n)*n/4>=cur)
ans+=b[(1+n)*n/4-cur];
}
printf("%lld\n",ans>>1);
return 0;
}

P1466 集合 Subset Sums 搜索+递推+背包三种做法的更多相关文章

  1. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  2. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  3. P1466 集合 Subset Sums(01背包求填充方案数)

    题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...

  4. 洛谷 P1466 集合 Subset Sums Label:DP

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  5. [LUOGU] P1466 集合 Subset Sums

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  6. P2347 砝码称重(动态规划递推,背包,洛谷)

    题目链接:P2347 砝码称重 参考题解:点击进入 纪念我第一道没理解题意的题 ''但不包括一个砝码也不用的情况'',这句话我看成了每个砝码起码放一个 然后就做不出来了 思路: 1.这题数据很小,10 ...

  7. [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式

    题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...

  8. 【CF607B】Zuma——区间dp(记忆化搜索/递推)

    以下是从中文翻译成人话的题面: 给定一个长度小于等于500的序列,每个数字代表一个颜色,每次可以消掉一个回文串,问最多消几次可以消完? (7.16) 这个题从洛谷pend回来以后显示有103个测试点( ...

  9. UVA11464 Even Parity 搜索+递推

    问题描述 UVA11464 题解 第一直觉爆搜. 发现 \(N \le 15\) ,然后后面每行都可以通过第一行递推出来. 爆搜第一行,递推后面+check \(\mathrm{Code}\) #in ...

随机推荐

  1. DG磁盘分区提示错误

    文章更新于:2020-02-26 一.当你使用 DG 分区遇到错误时 1.错误复现 2.解决办法 以管理员身份打开cmd 运行 chkdsk /f /x g:(这里的 g 替换成你要检查的盘符) 然后 ...

  2. floyd三重循环最外层为什么一定是K

    Floyd算法为什么把k放在最外层? - 知乎 https://www.zhihu.com/question/30955032高票答案: 简单地总结一下:K没放在最外面一定是错的,但是在某些数据比较水 ...

  3. Spring Boot 和 Spring Cloud 应用内存如何管理?

    在整体应用架构中,非生产环境情况下,一般 1GB 或者 2GB 的 RAM 就足够了.如果我们将这个应用程序划分为 20 或 30 个独立的微服务,那么很难期望 RAM 仍将保持在 1GB 或 2GB ...

  4. linux知识点系列之 umask

    介绍 umask(user's mask)用来设置文件权限掩码.权限掩码是由3个八进制的数字所组成,将现有的存取权限减掉权限掩码后,即可产生建立文件时预设的权限. UNIX最初实现时不包含umask命 ...

  5. Python-气象-大气科学-可视化绘图系列(三)—— 地图上自动标注省会名称(demo调整中)(代码+示例)

    本文为原创文章 本文链接:https://www.cnblogs.com/zhanling/p/12606990.html # -*- coding: utf-8 -*- ''' Author: He ...

  6. stand up meeting 11/27/2015-11/29/2015

    part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云   确定释义显示方案并进行代码实现:     4  完成UI设计的各项动能按钮的代码实现  6 数据库 朱玉影  导入了4 ...

  7. python机器学习入门-(1)

    机器学习入门项目 如果你和我一样是一个机器学习小白,这里我将会带你进行一个简单项目带你入门机器学习.开始吧! 1.项目介绍 这个项目是针对鸢尾花进行分类,数据集是含鸢尾花的三个亚属的分类信息,通过机器 ...

  8. 杂记三 &#183; CSP-2019-The first step

    update:我终于懂得衰亡的民族之所以沉默的缘由了. 初赛Day -7 虽然我是第一次参加初赛而且到现在为止我还没见过初赛题但我一点也不慌! 真的!一点!也不慌! 初赛Day 1 早上和可s爱b j ...

  9. Python 如何移除旧的版本特性,如何迎接新的特性?

    2020 年 4 月 20 日,Python 2 的最后一个版本 2.7.18 发布了,这意味着 Python 2 是真正的 EOL(end of life)了,一个时代终于落幕了. Python 2 ...

  10. 程序选择结构if和switch的定义以及使用方法

       什么是if选择结构 if选择结构是根据条件判断之后在做处理 基本的if选择结构的语法 if(条件){//条件为真则执行代码1,否则不执行  //代码块1 }   if-else选择结构 为什么使 ...