和tyvj的Easy一样吧(然而还是不会2333)

期望是不能直接平方的(涨姿势),所以,,呵呵

 #include<bits/stdc++.h>
#define inf 0x7fffffff
#define LL long long
#define N 100005
using namespace std;
inline int ra()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
double f[N],l[N],ll[N],a[N];
int main()
{
int n=ra();
for (int i=; i<=n; i++)
{
scanf("%lf",&a[i]);
l[i]=(l[i-]+)*a[i];
ll[i]=(ll[i-]+l[i-]*+)*a[i];
f[i]=f[i-]+(*l[i-]+*ll[i-]+)*a[i];
}
printf("%.1lf",f[n]);
return ;
}

bzoj 4318OSU!的更多相关文章

  1. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  2. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  3. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  4. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

  5. BZOJ 题目整理

    bzoj 500题纪念 总结一发题目吧,挑几道题整理一下,(方便拖板子) 1039:每条线段与前一条线段之间的长度的比例和夹角不会因平移.旋转.放缩而改变,所以将每条轨迹改为比例和夹角的序列,复制一份 ...

  6. 【sdoi2013】森林 BZOJ 3123

    Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数 ...

  7. 【清华集训】楼房重建 BZOJ 2957

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  8. 【splay】文艺平衡树 BZOJ 3223

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3  ...

  9. bzoj 刷水

    bzoj 3856: Monster 虽然是sb题,,但是要注意h可能<=a,,,开始忘记判了WA得很开心. #include <iostream> #include <cst ...

随机推荐

  1. Celery的常用知识

    什么是Clelery   Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统.专注于实时处理的异步任务队列.同时也支持任务调度. Celery的架构由三部分组成,消息中间件(message ...

  2. 大数据萌新的Python学习之路(三)

    笔记内容:  一.集合及其运算 在之列表中我们可以存储数据,并且对数据进行各种各样的操作.但是如果我们想要对数据进行去重时是十分麻烦的,需要使用循环,要建立新的列表,还要 进行对比,十分的麻烦,还消耗 ...

  3. 修饰者模式(装饰者模式,Decoration)

    1. 装饰者模式,动态地将责任附加到对象上.若要扩展功能,装饰者提供了比继承更加有弹性的替代方案. 2.组合和继承的区别 继承.继承是给一个类添加行为的比较有效的途径.通过使用继承,可以使得子类在拥有 ...

  4. 【Luogu4448】 [AHOI2018初中组]球球的排列

    题意 有 \(n\) 个球球,每个球球有一个属性值 .一个合法的排列满足不存在相邻两个球球的属性值乘积是完全平方数.求合法的排列数量对 \(10^9+7\) 取膜. \(n\le 300\) (本题数 ...

  5. JavaScript 文件延迟和异步加载

    JavaScript 文件延迟和异步加载 -般情况下,在文档的 <head> 标签中包含 JavaScript 脚本,或者导入的 JavaScript 文件. 这意味着必须等到全部 Jav ...

  6. Linux之关于用户的几个重要配置文件

    . /etc/skel/ 用来存放新用户配置文件(环境变量)的目录,当创建新用户时,系统会把当下目录的所有文件拷贝一份到新用户家目录中,即:cp -a /etc/skel/* /home/ddu 2. ...

  7. Product of Polynomials

    题意:多项式相乘,合并同类项后输出每一项的系数. 题目链接:https://www.patest.cn/contests/pat-a-practise/1009 分析:注意合并后系数为0,这一项就不存 ...

  8. 转linux top 命令

    top 命令 每天一个linux命令(44):top命令 非常好的一篇博文,这位作者<每天一个linux命令>系列写的非常棒! 关于top的cpu使用率超过100% 在环境中会出现这种现象 ...

  9. 017.CI4框架CodeIgniter数据库操作之:Updata更新修改一条数据

    01. 在Model中写入数据库操作的代码如下: <?php namespace App\Models\System; use CodeIgniter\Model; class User_mod ...

  10. oracle通用帮助类

    需要的dll( EntityFramework.6.0.0Oracle.ManagedDataAccess.12.1.2400System.Configuration.dllEmitMapper.1. ...