LA_4730 Kingdom 并查集+树状数组
给定N个点的坐标,代表N各城市,有M种操作,共分两种,一种是连线,把两个点连起来(一旦构成连通图,这个连通图即为一个州),还有种询问操作,为y=c,(c为小数部分恒为.5的实数),问y=c这条线经过了多少个大周,这些州总共有多少个城市
很明显要用到并查集,比较好的做法是把并查集落实到线段树上,并查集维护的是每个集合的最大y和最小y,以及rank表示集合数目。但是线段树要用到离散化、
然后参照一个用树状数组的博客,其实思路差不多,都是把每次的变更落实到树上
不过这个树状数组跟之前写的不一样,这个是改段查点型的,之前的是改点查段型的,其实只要改一下辅助数组的定义即可,在这个树状数组里面,把辅助数组d当做从1到当前所有的变更,每次更新时从当前往递减方向,所以,为了得到某个点值,必须把当前点以及当前之前的变更都加起来。
所以这个
add(int loc,int v)
{
while (loc>0){d[loc]+=v;loc-=lowbit(loc);}
}
query(int loc)
{
int ret=0;
while (loc<n) {ret+=d[loc];loc+=lowbit(loc);}
return ret;
}
因为给定的数是.5的实数,故意把坐标往后压一位即可,把每一个小格子往后压成一个点即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int n,m;
int f[],rank[],y1[],y2[];
void init()
{
for (int i=;i<=n;i++){
f[i]=i;
rank[i]=;
}
}
int findset(int x)
{
if (x!=f[x]){
f[x]=findset(f[x]);
}
return f[x];
}
int lowbit(int x)
{
return x&(-x);
}
struct bit
{
int d[];
int limit;
void clear()
{
memset(d,,sizeof d);
}
void add(int L,int R,int v){
while (R>=){
d[R]+=v;
R-=lowbit(R);
}
while (L>=){
d[L]+=-v;
L-=lowbit(L); //L这里不能算点,因为每个格子都往后压,每个点x,就代表x-1到x这个区间,所以在这里可以抵消L的格子的影响
}
}
int query(int x)
{
int ret=;
while (x<=limit){
ret+=d[x];
x+=lowbit(x);
}
return ret;
}
}city,state;
void unit(int r1,int r2)
{
f[r1]=r2;
rank[r2]+=rank[r1];
}
int main()
{
int t;
scanf("%d",&t);
int a,b;
double c;
char ch[];
while (t--)
{
city.clear();
state.clear();
scanf("%d",&n);
init();
int maxn=;
for (int i=;i<n;i++){
scanf("%d%d",&a,&b);
y1[i]=b;y2[i]=b;
maxn=max(maxn,b);
}
city.limit=state.limit=maxn;
scanf("%d",&m);
for (int i=;i<=m;i++){
scanf("%s",ch);
if (ch[]=='r'){
scanf("%d%d",&a,&b);
int r1=findset(a);
int r2=findset(b);
if (r1==r2) continue;
if (rank[r1]== && rank[r2]==){
unit(r1,r2);
y1[r2]=min(y1[r2],y1[r1]);
y2[r2]=max(y2[r2],y2[r1]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
else
if (rank[r1]== || rank[r2]==){
if (rank[r1]==) swap(r1,r2);
city.add(y1[r1],y2[r1],-);
state.add(y1[r1],y2[r1],-rank[r1]);
unit(r1,r2);
y1[r2]=min(y1[r1],y1[r2]);
y2[r2]=max(y2[r1],y2[r2]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
else
{
city.add(y1[r1],y2[r1],-);
state.add(y1[r1],y2[r1],-rank[r1]); city.add(y1[r2],y2[r2],-);
state.add(y1[r2],y2[r2],-rank[r2]); unit(r1,r2);
y1[r2]=min(y1[r1],y1[r2]);
y2[r2]=max(y2[r1],y2[r2]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
}
else {
scanf("%lf",&c);
int tmp=c;
tmp++;
printf("%d %d\n",city.query(tmp),state.query(tmp));
}
}
}
return ;
}
LA_4730 Kingdom 并查集+树状数组的更多相关文章
- BZOJ-3211花神游历各国 并查集+树状数组
一开始想写线段树区间开方,简单暴力下,但觉得变成复杂度稍高,懒惰了,编了个复杂度简单的 3211: 花神游历各国 Time Limit: 5 Sec Memory Limit: 128 MB Subm ...
- BZOJ3211 花神游历各国 并查集 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3211 题意概括 有n个数形成一个序列. m次操作. 有两种,分别是: 1. 区间开根(取整) 2. ...
- hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)
hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...
- 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组
题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...
- HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...
- la4730(并查集+树状数组)
https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=30& ...
- 【BZOJ3211】花神游历各国 并查集+树状数组
[BZOJ3211]花神游历各国 Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 41 100 5 551 1 22 1 ...
- HDU 4750 Count The Pairs ★(图+并查集+树状数组)
题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
随机推荐
- oracle,mysql,SqlServer三种数据库的分页查询
MySql: MySQL数据库实现分页比较简单,提供了 LIMIT函数.一般只需要直接写到sql语句后面就行了.LIMIT子 句可以用来限制由SELECT语句返回过来的数据数量,它有一个或两个参数,如 ...
- zookeeper加Kafka集群配置
官方 https://zookeeper.apache.org/doc/r3.5.6/zookeeperStarted.html#sc_Prerequisites https://www.cnblog ...
- rinetd 进行转发
目前云数据库 Redis 版需要通过 ECS 进行内网连接访问.如果您本地需要通过公网访问云数据库 Redis,可以在 ECS Linux 云服务器中安装 rinetd 进行转发实现. 在云服务器 E ...
- MongoDB分片技术原理和高可用集群配置方案
一.Sharding分片技术 1.分片概述 当数据量比较大的时候,我们需要把数分片运行在不同的机器中,以降低CPU.内存和Io的压力,Sharding就是数据库分片技术. MongoDB分片技术类似M ...
- 吴裕雄--天生自然JAVAIO操作学习笔记:字符编码与对象序列化
public class CharSetDemo01{ public static void main(String args[]){ System.out.println("系统默认编码: ...
- jmeter用Stepping Thread Group 递增并发数
jmeter安装插件Stepping Thread Group 如图所示设置的时候,本以为是每2秒 按 1 2 3 4 递增的,总共请求应该是10个,可是运行后却请求了几十个. 这个是有关线程数是否就 ...
- python使用opencv在Windows下调用摄像头
环境准备 1.我这里使用的是python3.7.4,python官网下载较慢的同学可以移步至 https://pan.baidu.com/s/1XiPafBjM__zfBvvsLyK7kQ 提取码:z ...
- python多进程编程中常常能用到的几种方法
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程.python提供了非常好用的多进程包Multiprocessing,只需要定义 ...
- 002-var_dump用法
<?php $a = 2150; //小刘的工资2150 $b = 2240; //小李的工资2240 echo "a=" . $a . " b=" . ...
- IOCTL_DISK_GET_DRIVE_GEOMETRY
IOCTL_DISK_GET_DRIVE_GEOMETRY: 获取磁盘参数 c++实现: #include <Windows.h> #include <winioctl.h> ...