给定N个点的坐标,代表N各城市,有M种操作,共分两种,一种是连线,把两个点连起来(一旦构成连通图,这个连通图即为一个州),还有种询问操作,为y=c,(c为小数部分恒为.5的实数),问y=c这条线经过了多少个大周,这些州总共有多少个城市

很明显要用到并查集,比较好的做法是把并查集落实到线段树上,并查集维护的是每个集合的最大y和最小y,以及rank表示集合数目。但是线段树要用到离散化、

然后参照一个用树状数组的博客,其实思路差不多,都是把每次的变更落实到树上

不过这个树状数组跟之前写的不一样,这个是改段查点型的,之前的是改点查段型的,其实只要改一下辅助数组的定义即可,在这个树状数组里面,把辅助数组d当做从1到当前所有的变更,每次更新时从当前往递减方向,所以,为了得到某个点值,必须把当前点以及当前之前的变更都加起来。

所以这个

add(int loc,int v)

{

while (loc>0){d[loc]+=v;loc-=lowbit(loc);}

}

query(int loc)

{

int ret=0;

while (loc<n) {ret+=d[loc];loc+=lowbit(loc);}

return ret;

}

因为给定的数是.5的实数,故意把坐标往后压一位即可,把每一个小格子往后压成一个点即可

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int n,m;
int f[],rank[],y1[],y2[];
void init()
{
for (int i=;i<=n;i++){
f[i]=i;
rank[i]=;
}
}
int findset(int x)
{
if (x!=f[x]){
f[x]=findset(f[x]);
}
return f[x];
}
int lowbit(int x)
{
return x&(-x);
}
struct bit
{
int d[];
int limit;
void clear()
{
memset(d,,sizeof d);
}
void add(int L,int R,int v){
while (R>=){
d[R]+=v;
R-=lowbit(R);
}
while (L>=){
d[L]+=-v;
L-=lowbit(L); //L这里不能算点,因为每个格子都往后压,每个点x,就代表x-1到x这个区间,所以在这里可以抵消L的格子的影响
}
}
int query(int x)
{
int ret=;
while (x<=limit){
ret+=d[x];
x+=lowbit(x);
}
return ret;
}
}city,state;
void unit(int r1,int r2)
{
f[r1]=r2;
rank[r2]+=rank[r1];
}
int main()
{
int t;
scanf("%d",&t);
int a,b;
double c;
char ch[];
while (t--)
{
city.clear();
state.clear();
scanf("%d",&n);
init();
int maxn=;
for (int i=;i<n;i++){
scanf("%d%d",&a,&b);
y1[i]=b;y2[i]=b;
maxn=max(maxn,b);
}
city.limit=state.limit=maxn;
scanf("%d",&m);
for (int i=;i<=m;i++){
scanf("%s",ch);
if (ch[]=='r'){
scanf("%d%d",&a,&b);
int r1=findset(a);
int r2=findset(b);
if (r1==r2) continue;
if (rank[r1]== && rank[r2]==){
unit(r1,r2);
y1[r2]=min(y1[r2],y1[r1]);
y2[r2]=max(y2[r2],y2[r1]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
else
if (rank[r1]== || rank[r2]==){
if (rank[r1]==) swap(r1,r2);
city.add(y1[r1],y2[r1],-);
state.add(y1[r1],y2[r1],-rank[r1]);
unit(r1,r2);
y1[r2]=min(y1[r1],y1[r2]);
y2[r2]=max(y2[r1],y2[r2]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
else
{
city.add(y1[r1],y2[r1],-);
state.add(y1[r1],y2[r1],-rank[r1]); city.add(y1[r2],y2[r2],-);
state.add(y1[r2],y2[r2],-rank[r2]); unit(r1,r2);
y1[r2]=min(y1[r1],y1[r2]);
y2[r2]=max(y2[r1],y2[r2]);
city.add(y1[r2],y2[r2],);
state.add(y1[r2],y2[r2],rank[r2]);
}
}
else {
scanf("%lf",&c);
int tmp=c;
tmp++;
printf("%d %d\n",city.query(tmp),state.query(tmp));
}
}
}
return ;
}

LA_4730 Kingdom 并查集+树状数组的更多相关文章

  1. BZOJ-3211花神游历各国 并查集+树状数组

    一开始想写线段树区间开方,简单暴力下,但觉得变成复杂度稍高,懒惰了,编了个复杂度简单的 3211: 花神游历各国 Time Limit: 5 Sec Memory Limit: 128 MB Subm ...

  2. BZOJ3211 花神游历各国 并查集 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3211 题意概括 有n个数形成一个序列. m次操作. 有两种,分别是: 1. 区间开根(取整) 2. ...

  3. hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)

    hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...

  4. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

  5. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  6. la4730(并查集+树状数组)

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=30& ...

  7. 【BZOJ3211】花神游历各国 并查集+树状数组

    [BZOJ3211]花神游历各国 Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 41 100 5 551 1 22 1 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...

随机推荐

  1. linux下FTP的工具和使用以及rpmReadSignature failed错误

      安装rpm文件时提示rpmReadSignature failed 错误 2011-09-23 11:04 现象: [root@localhost share]# rpm -ivh syslog- ...

  2. DataReader和DataAdapter的区别

    SqlDataReader是一个向前的指针,本身并不包含数据,调用一次Read()方法它就向前到下一条记录,一个SqlDataReader必须单独占用一个打开的数据库连接. 在使用 SqlDataRe ...

  3. ROS-5 : 自定义消息

    自定义消息一般存储在功能包的msg文件夹下的.msg文件中,这些定义可告诉ROS这些数据的类型和名称,以便于在ROS 节点中使用.添加完这些自定义消息后,ROS会将其转为等效的C++节点,从而可在其他 ...

  4. [LeetCode] 326. Power of Three + 342. Power of Four

    这两题我放在一起说是因为思路一模一样,没什么值得研究的.思路都是用对数去判断. /** * @param {number} n * @return {boolean} */ var isPowerOf ...

  5. SIAMATIC S7-1200 中通过 Modbus RTU 如何读取地址范围 9999 到 65535 的输入字

    原文地址 说明 除了需要 STEP 7 >= V13 SP1 (TIA Portal) 的软件,还需要 S7-1200 CPU 固件版本 >= V4 (文章编号: 6ES721x-1xx4 ...

  6. JuJu团队1月8号工作汇报

    JuJu团队1月8号工作汇报 JuJu   Scrum 团队成员 今日工作 剩余任务 困难 飞飞 实现三维Dense 将crossentrophy和softmax连接起来 无 婷婷 完善main.jl ...

  7. Liveness 探测【转】

    Liveness 探测让用户可以自定义判断容器是否健康的条件.如果探测失败,Kubernetes 就会重启容器. 还是举例说明,创建如下 Pod: 启动进程首先创建文件 /tmp/healthy,30 ...

  8. vs2010编译C++ 对象的使用

    // CTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using names ...

  9. day01-Python运维开发基础

    还是用思维导图来一遍,印象更深!

  10. pt-archiver 归档数据

    pt-archiver 参数说明pt-archiver是Percona-Toolkit工具集中的一个组件,是一个主要用于对MySQL表数据进行归档和清除工具.它可以将数据归档到另一张表或者是一个文件中 ...