感知融合 awesome list

雷达聚类

  • 雷达处理杂波滤除 CFAR (Constant False Alarm Rate):Lee, Jae-Eun, et al. "Harmonic clutter recognition and suppression for automotive radar sensors." International Journal of Distributed Sensor Networks 13.9 (2017):1550147717729793.

  • 德州仪器详尽雷达资料: Tracking radar targets with multiple reflection points (Texas Instruments)

  • 雷达鬼影检测: Sole, Amir, et al. "Solid or not solid: Vision for radar target validation." IEEE Intelligent Vehicles Symposium, 2004. IEEE, 2004.

目标匹配

  • 目标级融合详细步骤 Chavez-Garcia, Ricardo Omar, and Olivier Aycard. "Multiple sensor fusion and classification for moving object detection and tracking." IEEE Transactions on Intelligent Transportation Systems 17.2 (2015): 525-534.

  • 摄像头雷达融合: Darms, Michael S., Paul E. Rybski, Christopher Baker, and Chris Urmson. "Obstacle detection and tracking for the urban challenge." IEEE Transactions on intelligent transportation systems 10, no. 3 (2009): 475-485.

  • 激光雷达摄像头融合: Ziguo Zhong, Stanley Liu, Manu Mathew, and Aish Dubey.“Camera Radar Fusion for Increased Reliability in

    ADAS Applications”. Electronic Imaging 2018.17 (2018):

自动泊车

  • 同济车位识别详细步骤和数据集 Li, Linshen, et al. "Vision-based parking-slot detection: A benchmark and a learning-based approach." 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017.

  • 同济深度学习角点检测算法:Zhang, Lin, et al. "Vision-based parking-slot detection: A DCNN-based approach and a large-scale benchmark dataset." IEEE Transactions on Image Processing 27.11 (2018): 5350-5364.

  • 分割 Wu, Yan, et al. "VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018.

  • vslam: Huang, Yewei, et al. "Vision-based Semantic Mapping and Localization for Autonomous Indoor Parking." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018

  • 超声波信号处理:Shao, Yunfeng, Pengzhen Chen, and Tongtong Cao. "A Grid Projection Method Based on Ultrasonic Sensor for Parking Space Detection." IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018.

  • 融合:Suhr, Jae Kyu, and Ho Gi Jung. "Sensor fusion-based vacant parking slot detection and tracking." IEEE Transactions on Intelligent Transportation Systems 15.1 (2013): 21-36.

车道线

  • Bosch车道线识别: Klotz, Albrecht, Jan Sparbert, and Dieter Hoetzer. "Lane data fusion for driver assistance systems." Proc. 7th International Conference on Information Fusion, Stockholm, Sweden. 2004.

  • 车辆与车道线关系: Nguyen, VanQuang, et al. "A study on real-time detection method of lane and vehicle for lane change assistant system using vision system on highway." Engineering science and technology, an international journal 21.5 (2018): 822-833.

  • 深度学习方法lanenet: Neven, Davy, et al. "Towards end-to-end lane detection: an instance segmentation approach." 2018 IEEE intelligent vehicles symposium (IV). IEEE, 2018.

  • 车道定位 Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration Dixiao Cui, Jianru 4 Xue, Member, IEEE, and Nanning Zheng, Fellow, IEEE

态势预估

  • cut-in预测,通过特征工程与机器学习预测切入目标:Heinemann, Tonja. Predicting cut-ins in traffic using a neural network. MS thesis. 2017.

  • Zhu, Ying, et al. "Reliable detection of overtaking vehicles using robust information fusion." IEEE Transactions on Intelligent Transportation Systems 7.4 (2006): 401-414.

激光雷达

  • ego-motion估计自车位置: Hoang, Berntsson. "Localisation using LiDAR and Camera." MS thesis. 2017.

  • 车辆检测pipeline:Du, Xinxin, et al. "A general pipeline for 3d detection of vehicles." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

  • 博士论文:Zhongzhen Luo, LiDAR Based Perception System: Pioneer Technology for Safety Driving

  • 相机融合:Car Detection for Autonomous Vehicle: LIDAR and Vision Fusion Approach Through Deep Learning Framework, Xinxin Du, Marcelo H. Ang Jr. and Daniela Rus

  • 标定: Improvements to Target-Based 3D LiDAR to Camera Calibration, Jiunn-Kai Huang and Jessy W. Grizzle

机器视觉

  • SOC系统设计: Zhou, Yuteng. "Computer Vision System-On-Chip Designs for Intelligent Vehicles." (2018).

  • mobiley测距单目测速测距:Stein, Gideon P., Ofer Mano, and Amnon Shashua. "Vision-based ACC with a single camera: bounds on range and range rate accuracy." IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683). IEEE, 2003.

  • mobileye行人检测:Pedestrian Detection for Driving Assistance Systems: Single-frame Classification

    and System Level Performance

SLAM

  • GraphSLAM: Sebastian Thrun, Michael Montemerlo. "The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures"

深度学习

  • resnet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

  • yolo目标检测:Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

  • feature可视化:Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

  • 速度效果trade-off:Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

场景识别

  • 场景综述:Xue, Jian-Ru, Jian-Wu Fang, and Pu Zhang. "A survey of scene understanding by event reasoning in autonomous driving." International Journal of Automation and Computing 15.3 (2018): 249-266.

  • 动作识别: Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2014. 568-576

  • fcn街景分割:Zhang Y, Qiu Z, Yao T, et al. Fully convolutional adaptation networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6810-6818.

系统设计

  • ADAS handbook: Hermann Winner, Stephan Hakuli, Felix Lotz, Christina Singer.

    “Handbook of Driver Assistance Systems" (2016)

  • 系统从需求功能到详细设计Automotive Systems Engineering, Markus Maurer, Hermann Winner

感知融合 awesome list的更多相关文章

  1. SystemML大规模机器学习,优化算子融合方案的研究

    SystemML大规模机器学习,优化算子融合方案的研究 摘要 许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划.在这种情况下,优化的机会融合基本算子的熔 ...

  2. 百度Apollo无人驾驶入门课程下载

    本文提供 百度Apollo官网的无人驾驶入门课程下载,主要为视频文件. 视频数量:101个:文件格式:MP4:视频总时长:2小时40分钟:文件总大小:约1.13GB: 马上下载 关注公众号罗孚传说(R ...

  3. Mobileye 自动驾驶策略(一)

    Mobileye 自动驾驶策略(一) 详解 Mobileye 自动驾驶解决方案 Mobileye的自动驾驶解决方案.总得来说,分为四种: Visual perception and sensor fu ...

  4. 13万字详细分析JDK中Stream的实现原理

    前提 Stream是JDK1.8中首次引入的,距今已经过去了接近8年时间(JDK1.8正式版是2013年底发布的).Stream的引入一方面极大地简化了某些开发场景,另一方面也可能降低了编码的可读性( ...

  5. SLAM+语音机器人DIY系列:(三)感知与大脑——2.带自校准九轴数据融合IMU惯性传感器

    摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...

  6. 【Apollo自动驾驶源码解读】车道线的感知和高精地图融合

    模式选择 在modules/map/relative_map/conf/relative_map_config.pb.txt文件中对模式进行修改: lane_source: OFFLINE_GENER ...

  7. 什么是业务运维,企业如何实现互联网+业务与IT的融合

    业务运维并不是一个新概念,针对传统信息架构提出的业务服务管理就是把以业务为核心的IT系统与IT基础设施性能进行整合运维的解决方案.然而随着互联网+转型的不断推进,基础设施的智能化和广泛云化成为IT发展 ...

  8. CTO对话:云端融合下的移动技术创新

    云端融合真的来了?快听CTO们怎么讲云端融合下,技术创新怎么破? 快听CTO箴言  云喊了很多年,对于很多普通的技术人,心中有很多疑问:云端融合到底意味着什么,对公司的技术体系有什么影响,未来又会走向 ...

  9. FNN模糊神经网络——信息系统客户服务感知评价

    案例描述 信息系统是否真正减轻业务人员的日常工作量提高工作效率?如何从提供“被动”服务转变为根据客户感知提供“主动”服务,真正实现电网企业对信息系统服务的有效管理?如何构建一套适合企业的信息系统客户服 ...

随机推荐

  1. Java实现 LeetCode 101 对称二叉树

    101. 对称二叉树 给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [1,2,2 ...

  2. Java中IO软件包的详细介绍

    一.Java Io流 Java Io流的概念 java的io是实现输入和输出的基础,可以方便的实现数据的输入和输出操作.在java中把不同的输入/输出源(键盘,文件,网络连接等)抽象表述为" ...

  3. 「持续集成实践系列 」Jenkins 2.x 构建CI自动化流水线常见技巧

    在上一篇文章中,我们介绍了Jenkins 2.x实现流水线的两种语法,以及在实际工作中该如何选择脚本式语法或声明式语法.原文可查阅:「持续集成实践系列」Jenkins 2.x 搭建CI需要掌握的硬核要 ...

  4. Oracle 11g RAC之HAIP相关问题总结

    1 文档概要 2 禁用/启用HAIP 2.1 禁用/启用HAIP资源 2.2 修改ASM资源的依赖关系 3 修改cluster_interconnects参数 3.1 使用grid用户修改ASM实例的 ...

  5. 【asp.net core】7 实战之 数据访问层定义

    0. 前言 在上一篇,我们搭建了一个项目框架,基本上是一个完整的项目.目前而言,大部分的应用基本都是这个结构.好的,不废话了,进入今天的议题:完成并实现数据层的基础实现. 1. 数据实体 通常情况下, ...

  6. 手把手带你入门numpy,从此数据处理不再慌【四】

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是numpy专题的第四篇文章,numpy中的数组重塑与三元表达式. 首先我们来看数组重塑,所谓的重塑本质上就是改变数组的shape.在保 ...

  7. List集合排序的方法

    1.list集合中的对象实现Comparable接口 public class User implements Comparable<User>{ private Integer id; ...

  8. sublime Text3 实现2:1:1三分屏效果

    小trick, 水一篇博客 先上效果图 由于写题啥的时候需要重定向输入输出改数据对拍, 设置成这样的效果就非常直观的看数据 直接切题, 首选项--快捷键--default里搜索alt+shift+1( ...

  9. LR脚本信息函数-lr_start_timer和lr_end_timer

    为了计算时间更加精确,可以用这个函数去掉LR自身的检查点所浪费的时间.如text check and image time Action() { double time_elapsed, durati ...

  10. 说说硬件中核心板的作用和优缺点,基于i.MX8M Mini核心处理器平台

    核心板,顾名思义,即硬件构成中关键的器件和电路打包封装的一块电子主板,具有布线复杂.多层.高频信号干扰.器件密度高等特性,大多数核心板集成了处理器.内存.存储器.电源管理和引脚,通过引脚与配套基板连接 ...