感知融合 awesome list
感知融合 awesome list
雷达聚类
雷达处理杂波滤除 CFAR (Constant False Alarm Rate):Lee, Jae-Eun, et al. "Harmonic clutter recognition and suppression for automotive radar sensors." International Journal of Distributed Sensor Networks 13.9 (2017):1550147717729793.
德州仪器详尽雷达资料: Tracking radar targets with multiple reflection points (Texas Instruments)
雷达鬼影检测: Sole, Amir, et al. "Solid or not solid: Vision for radar target validation." IEEE Intelligent Vehicles Symposium, 2004. IEEE, 2004.
目标匹配
目标级融合详细步骤 Chavez-Garcia, Ricardo Omar, and Olivier Aycard. "Multiple sensor fusion and classification for moving object detection and tracking." IEEE Transactions on Intelligent Transportation Systems 17.2 (2015): 525-534.
摄像头雷达融合: Darms, Michael S., Paul E. Rybski, Christopher Baker, and Chris Urmson. "Obstacle detection and tracking for the urban challenge." IEEE Transactions on intelligent transportation systems 10, no. 3 (2009): 475-485.
激光雷达摄像头融合: Ziguo Zhong, Stanley Liu, Manu Mathew, and Aish Dubey.“Camera Radar Fusion for Increased Reliability in
ADAS Applications”. Electronic Imaging 2018.17 (2018):
自动泊车
同济车位识别详细步骤和数据集 Li, Linshen, et al. "Vision-based parking-slot detection: A benchmark and a learning-based approach." 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2017.
同济深度学习角点检测算法:Zhang, Lin, et al. "Vision-based parking-slot detection: A DCNN-based approach and a large-scale benchmark dataset." IEEE Transactions on Image Processing 27.11 (2018): 5350-5364.
分割 Wu, Yan, et al. "VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018.
vslam: Huang, Yewei, et al. "Vision-based Semantic Mapping and Localization for Autonomous Indoor Parking." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018
超声波信号处理:Shao, Yunfeng, Pengzhen Chen, and Tongtong Cao. "A Grid Projection Method Based on Ultrasonic Sensor for Parking Space Detection." IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018.
融合:Suhr, Jae Kyu, and Ho Gi Jung. "Sensor fusion-based vacant parking slot detection and tracking." IEEE Transactions on Intelligent Transportation Systems 15.1 (2013): 21-36.
车道线
Bosch车道线识别: Klotz, Albrecht, Jan Sparbert, and Dieter Hoetzer. "Lane data fusion for driver assistance systems." Proc. 7th International Conference on Information Fusion, Stockholm, Sweden. 2004.
车辆与车道线关系: Nguyen, VanQuang, et al. "A study on real-time detection method of lane and vehicle for lane change assistant system using vision system on highway." Engineering science and technology, an international journal 21.5 (2018): 822-833.
深度学习方法lanenet: Neven, Davy, et al. "Towards end-to-end lane detection: an instance segmentation approach." 2018 IEEE intelligent vehicles symposium (IV). IEEE, 2018.
车道定位 Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration Dixiao Cui, Jianru 4 Xue, Member, IEEE, and Nanning Zheng, Fellow, IEEE
态势预估
cut-in预测,通过特征工程与机器学习预测切入目标:Heinemann, Tonja. Predicting cut-ins in traffic using a neural network. MS thesis. 2017.
Zhu, Ying, et al. "Reliable detection of overtaking vehicles using robust information fusion." IEEE Transactions on Intelligent Transportation Systems 7.4 (2006): 401-414.
激光雷达
ego-motion估计自车位置: Hoang, Berntsson. "Localisation using LiDAR and Camera." MS thesis. 2017.
车辆检测pipeline:Du, Xinxin, et al. "A general pipeline for 3d detection of vehicles." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
博士论文:Zhongzhen Luo, LiDAR Based Perception System: Pioneer Technology for Safety Driving
相机融合:Car Detection for Autonomous Vehicle: LIDAR and Vision Fusion Approach Through Deep Learning Framework, Xinxin Du, Marcelo H. Ang Jr. and Daniela Rus
标定: Improvements to Target-Based 3D LiDAR to Camera Calibration, Jiunn-Kai Huang and Jessy W. Grizzle
机器视觉
SOC系统设计: Zhou, Yuteng. "Computer Vision System-On-Chip Designs for Intelligent Vehicles." (2018).
mobiley测距单目测速测距:Stein, Gideon P., Ofer Mano, and Amnon Shashua. "Vision-based ACC with a single camera: bounds on range and range rate accuracy." IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683). IEEE, 2003.
mobileye行人检测:Pedestrian Detection for Driving Assistance Systems: Single-frame Classification
and System Level Performance
SLAM
- GraphSLAM: Sebastian Thrun, Michael Montemerlo. "The GraphSLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures"
深度学习
resnet: He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
yolo目标检测:Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
feature可视化:Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.
速度效果trade-off:Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
场景识别
场景综述:Xue, Jian-Ru, Jian-Wu Fang, and Pu Zhang. "A survey of scene understanding by event reasoning in autonomous driving." International Journal of Automation and Computing 15.3 (2018): 249-266.
动作识别: Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. Red Hook, NY: Curran Associates, Inc., 2014. 568-576
fcn街景分割:Zhang Y, Qiu Z, Yao T, et al. Fully convolutional adaptation networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 6810-6818.
系统设计
ADAS handbook: Hermann Winner, Stephan Hakuli, Felix Lotz, Christina Singer.
“Handbook of Driver Assistance Systems" (2016)系统从需求功能到详细设计Automotive Systems Engineering, Markus Maurer, Hermann Winner
感知融合 awesome list的更多相关文章
- SystemML大规模机器学习,优化算子融合方案的研究
SystemML大规模机器学习,优化算子融合方案的研究 摘要 许多大规模机器学习(ML)系统允许通过线性代数程序指定定制的ML算法,然后自动生成有效的执行计划.在这种情况下,优化的机会融合基本算子的熔 ...
- 百度Apollo无人驾驶入门课程下载
本文提供 百度Apollo官网的无人驾驶入门课程下载,主要为视频文件. 视频数量:101个:文件格式:MP4:视频总时长:2小时40分钟:文件总大小:约1.13GB: 马上下载 关注公众号罗孚传说(R ...
- Mobileye 自动驾驶策略(一)
Mobileye 自动驾驶策略(一) 详解 Mobileye 自动驾驶解决方案 Mobileye的自动驾驶解决方案.总得来说,分为四种: Visual perception and sensor fu ...
- 13万字详细分析JDK中Stream的实现原理
前提 Stream是JDK1.8中首次引入的,距今已经过去了接近8年时间(JDK1.8正式版是2013年底发布的).Stream的引入一方面极大地简化了某些开发场景,另一方面也可能降低了编码的可读性( ...
- SLAM+语音机器人DIY系列:(三)感知与大脑——2.带自校准九轴数据融合IMU惯性传感器
摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...
- 【Apollo自动驾驶源码解读】车道线的感知和高精地图融合
模式选择 在modules/map/relative_map/conf/relative_map_config.pb.txt文件中对模式进行修改: lane_source: OFFLINE_GENER ...
- 什么是业务运维,企业如何实现互联网+业务与IT的融合
业务运维并不是一个新概念,针对传统信息架构提出的业务服务管理就是把以业务为核心的IT系统与IT基础设施性能进行整合运维的解决方案.然而随着互联网+转型的不断推进,基础设施的智能化和广泛云化成为IT发展 ...
- CTO对话:云端融合下的移动技术创新
云端融合真的来了?快听CTO们怎么讲云端融合下,技术创新怎么破? 快听CTO箴言 云喊了很多年,对于很多普通的技术人,心中有很多疑问:云端融合到底意味着什么,对公司的技术体系有什么影响,未来又会走向 ...
- FNN模糊神经网络——信息系统客户服务感知评价
案例描述 信息系统是否真正减轻业务人员的日常工作量提高工作效率?如何从提供“被动”服务转变为根据客户感知提供“主动”服务,真正实现电网企业对信息系统服务的有效管理?如何构建一套适合企业的信息系统客户服 ...
随机推荐
- Java实现蓝桥杯VIP 算法训练 P0502
试题 算法训练 P0502 资源限制 时间限制:1.0s 内存限制:256.0MB 编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数N也是由用户输入的,最多不会超过20.然后 ...
- Java实现 蓝桥杯 一步之遥
一步之遥 从昏迷中醒来,小明发现自己被关在X星球的废矿车里. 矿车停在平直的废弃的轨道上. 他的面前是两个按钮,分别写着"F"和"B". 小明突然记起来,这两个 ...
- Java实现蓝桥杯互补二元组
分三处 1.当差值为0并且只有一个二元组就不管他 2.当差值为0并且二元组个数>=1加上他并减去它本身 3.当差值为存在并且不为0时直接加上他 因为都计算了两次,所以最后ans/2 用了map的 ...
- java实现Synchronized锁的用法
Java线程同步中的一个重要的概念synchronized. synchronized是java的关键字,是一种同步锁,它作用的对象有以下几种: ①作用在代码块上.该代码块称为同步代码块,作用范围是大 ...
- 从零搭建Window前端开发环境
前言 作为一个小前端,是否因为搭建环境烦恼过,是否因为npm等国外镜像踩坑过,不要怕,接下来跟着我一步步搭建适合自己的开发环境吧!!! node 这个不用说了吧,我们经常和他打交道,无论是 gulp. ...
- Ansible facts详解
Ansible是一个系列文章,我会尽量以通俗易懂.诙谐幽默的总结方式给大家呈现这些枯燥的知识点,让学习变的有趣一些. Ansible系列博文直达链接:Ansible入门系列 前言 如果你跟着前面的文章 ...
- 浅谈Python内置对象类型——数字篇(附py2和py3的区别之一)
Python是一门面向对象的编程设计语言,程序中每一样东西都可以视为一个对象.Python内置对象可以分为简单类型和容器类型,简单类型主要是数值型数据,而容器类型是可以包含其他对象类型的集体,如序列. ...
- Mbatis使用
Mybatis的搭建过程 导入jar 创建mybatis的核心(全局)配置文件mybatis-config.xml,并配置 <?xml version="1.0" encod ...
- 附022.Kubernetes_v1.18.3高可用部署架构一
kubeadm介绍 kubeadm概述 参考附003.Kubeadm部署Kubernetes. kubeadm功能 参考附003.Kubeadm部署Kubernetes. 本方案描述 本方案采用kub ...
- ZWave对COMAND CLASS的处理流程
文章主题 在开发一个 ZWave Device 的过程中,对 COMAND CLASS(单词太长了,后面就简写为 CC 啦) 的处理是最基本.最重要的工作.这篇文章以最最简单的 CC:COMMNAD ...