【猫狗数据集】使用top1和top5准确率衡量模型
数据集下载地址:
链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4
创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html
读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html
进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html
保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html
加载保存的模型并测试:https://www.cnblogs.com/xiximayou/p/12459499.html
划分验证集并边训练边验证:https://www.cnblogs.com/xiximayou/p/12464738.html
使用学习率衰减策略并边训练边测试:https://www.cnblogs.com/xiximayou/p/12468010.html
利用tensorboard可视化训练和测试过程:https://www.cnblogs.com/xiximayou/p/12482573.html
从命令行接收参数:https://www.cnblogs.com/xiximayou/p/12488662.html
epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html
之前使用的仅仅是top1准确率。在图像分类中,一般使用top1和top5来衡量分类模型的好坏。下面来看看。
首先在util下新建一个acc.py文件,向里面加入计算top1和top5准确率的代码:
import torch
def accu(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred)) res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
重点就是topk()函数:
torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
input:输入张量
k:指定返回的前几位的值
dim:排序的维度
largest:返回最大值
sorted:返回值是否排序
out:可选输出张量
需要注意的是我们这里只有两类,因此不存在top5。因此如果设置参数topk=(1,5),则会报错:RuntimeError:invalid argument 5:k not in range for dimension at /pytorch/ate ...
因此我们只能设置topk=(1,2),而且top2的值肯定是100%。最终res中第一位存储的是top1准确率,第二位存储的是top2准确率。
然后修改对应的train.py:
import torch
from tqdm import tqdm
from tensorflow import summary
import datetime
from utils import acc """
current_time = str(datetime.datetime.now().timestamp())
train_log_dir = '/content/drive/My Drive/colab notebooks/output/tsboardx/train/' + current_time
test_log_dir = '/content/drive/My Drive/colab notebooks/output/tsboardx/test/' + current_time
val_log_dir = '/content/drive/My Drive/colab notebooks/output/tsboardx/val/' + current_time
train_summary_writer = summary.create_file_writer(train_log_dir)
val_summary_writer = summary.create_file_writer(val_log_dir)
test_summary_writer = summary.create_file_writer(test_log_dir)
"""
class Trainer:
def __init__(self,criterion,optimizer,model):
self.criterion=criterion
self.optimizer=optimizer
self.model=model
def get_lr(self):
for param_group in self.optimizer.param_groups:
return param_group['lr']
def loop(self,num_epochs,train_loader,val_loader,test_loader,scheduler=None,acc1=0.0):
self.acc1=acc1
for epoch in range(1,num_epochs+1):
lr=self.get_lr()
print("epoch:{},lr:{:.6f}".format(epoch,lr))
self.train(train_loader,epoch,num_epochs)
self.val(val_loader,epoch,num_epochs)
self.test(test_loader,epoch,num_epochs)
if scheduler is not None:
scheduler.step() def train(self,dataloader,epoch,num_epochs):
self.model.train()
with torch.enable_grad():
self._iteration_train(dataloader,epoch,num_epochs) def val(self,dataloader,epoch,num_epochs):
self.model.eval()
with torch.no_grad():
self._iteration_val(dataloader,epoch,num_epochs)
def test(self,dataloader,epoch,num_epochs):
self.model.eval()
with torch.no_grad():
self._iteration_test(dataloader,epoch,num_epochs) def _iteration_train(self,dataloader,epoch,num_epochs):
#total_step=len(dataloader)
#tot_loss = 0.0
#correct = 0
train_loss=AverageMeter()
train_top1=AverageMeter()
train_top2=AverageMeter()
#for i ,(images, labels) in enumerate(dataloader):
#res=[]
for images, labels in tqdm(dataloader,ncols=80):
images = images.cuda()
labels = labels.cuda()
# Forward pass
outputs = self.model(images)
#_, preds = torch.max(outputs.data,1)
pred1_train,pred2_train=acc.accu(outputs,labels,topk=(1,2))
loss = self.criterion(outputs, labels)
train_loss.update(loss.item(),images.size(0))
train_top1.update(pred1_train[0],images.size(0))
train_top2.update(pred2_train[0],images.size(0))
# Backward and optimizer
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
#tot_loss += loss.data
"""
if (i+1) % 2 == 0:
print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
.format(epoch, num_epochs, i+1, total_step, loss.item()))
"""
#correct += torch.sum(preds == labels.data).to(torch.float32)
### Epoch info ####
#epoch_loss = tot_loss/len(dataloader.dataset)
#epoch_acc = correct/len(dataloader.dataset)
#print('train loss: {:.4f},train acc: {:.4f}'.format(epoch_loss,epoch_acc))
print(">>>[{}] train_loss:{:.4f} top1:{:.4f} top2:{:.4f}".format("train", train_loss.avg, train_top1.avg, train_top2.avg))
"""
with train_summary_writer.as_default():
summary.scalar('loss', train_loss.avg, epoch)
summary.scalar('accuracy', train_top1.avg, epoch)
"""
"""
if epoch==num_epochs:
state = {
'model': self.model.state_dict(),
'optimizer':self.optimizer.state_dict(),
'epoch': epoch,
'train_loss':train_loss.avg,
'train_acc':train_top1.avg,
}
save_path="/content/drive/My Drive/colab notebooks/output/"
torch.save(state,save_path+"/resnet18_final_v2"+".t7")
"""
t_loss = train_loss.avg,
t_top1 = train_top1.avg
t_top2 = train_top2.avg
return t_loss,t_top1,t_top2
def _iteration_val(self,dataloader,epoch,num_epochs):
#total_step=len(dataloader)
#tot_loss = 0.0
#correct = 0
#for i ,(images, labels) in enumerate(dataloader):
val_loss=AverageMeter()
val_top1=AverageMeter()
val_top2=AverageMeter()
for images, labels in tqdm(dataloader,ncols=80):
images = images.cuda()
labels = labels.cuda() # Forward pass
outputs = self.model(images)
#_, preds = torch.max(outputs.data,1)
pred1_val,pred2_val=acc.accu(outputs,labels,topk=(1,2))
loss = self.criterion(outputs, labels)
val_loss.update(loss.item(),images.size(0))
val_top1.update(pred1_val[0],images.size(0))
val_top2.update(pred2_val[0],images.size(0))
#tot_loss += loss.data
#correct += torch.sum(preds == labels.data).to(torch.float32)
"""
if (i+1) % 2 == 0:
print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
.format(1, 1, i+1, total_step, loss.item()))
"""
### Epoch info ####
#epoch_loss = tot_loss/len(dataloader.dataset)
#epoch_acc = correct/len(dataloader.dataset)
#print('val loss: {:.4f},val acc: {:.4f}'.format(epoch_loss,epoch_acc))
print(">>>[{}] val_loss:{:.4f} top1:{:.4f} top2:{:.4f}".format("val", val_loss.avg, val_top1.avg, val_top2.avg))
"""
with val_summary_writer.as_default():
summary.scalar('loss', val_loss.avg, epoch)
summary.scalar('accuracy', val_top1.avg, epoch)
"""
t_loss = val_loss.avg,
t_top1 = val_top1.avg
t_top2 = val_top2.avg
return t_loss,t_top1,t_top2
def _iteration_test(self,dataloader,epoch,num_epochs):
#total_step=len(dataloader)
#tot_loss = 0.0
#correct = 0
#for i ,(images, labels) in enumerate(dataloader):
test_loss=AverageMeter()
test_top1=AverageMeter()
test_top2=AverageMeter()
for images, labels in tqdm(dataloader,ncols=80):
images = images.cuda()
labels = labels.cuda() # Forward pass
outputs = self.model(images)
#_, preds = torch.max(outputs.data,1)
pred1_test,pred2_test=acc.accu(outputs,labels,topk=(1,2))
loss = self.criterion(outputs, labels)
test_loss.update(loss.item(),images.size(0))
test_top1.update(pred1_test[0],images.size(0))
test_top2.update(pred2_test[0],images.size(0))
#tot_loss += loss.data
#correct += torch.sum(preds == labels.data).to(torch.float32)
"""
if (i+1) % 2 == 0:
print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
.format(1, 1, i+1, total_step, loss.item()))
"""
### Epoch info ####
#epoch_loss = tot_loss/len(dataloader.dataset)
#epoch_acc = correct/len(dataloader.dataset)
#print('test loss: {:.4f},test acc: {:.4f}'.format(epoch_loss,epoch_acc))
print(">>>[{}] test_loss:{:.4f} top1:{:.4f} top2:{:.4f}".format("test", test_loss.avg, test_top1.avg, test_top2.avg))
t_loss = test_loss.avg,
t_top1 = test_top1.avg
t_top2 = test_top2.avg
"""
with test_summary_writer.as_default():
summary.scalar('loss', test_loss.avg, epoch)
summary.scalar('accuracy', test_top1.avg, epoch)
"""
"""
if epoch_acc > self.acc1:
state = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"epoch": epoch,
"epoch_loss": test_loss.avg,
"epoch_acc": test_top1.avg,
}
save_path="/content/drive/My Drive/colab notebooks/output/"
print("在第{}个epoch取得最好的测试准确率,准确率为:{:.4f}".format(epoch,test_loss.avg))
torch.save(state,save_path+"/resnet18_best_v2"+".t7")
self.acc1=max(self.acc1,test_loss.avg)
"""
return t_loss,t_top1,t_top2 class AverageMeter(object):
def __init__(self):
self.reset() def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0 def update(self, val, n=1):
self.val = val
self.sum += float(val) * n
self.count += n
self.avg = self.sum / self.count
我们新建了一个AverageMeter类来存储结果。
最终结果:
下一节:加载预训练的模型并进行微调。
【猫狗数据集】使用top1和top5准确率衡量模型的更多相关文章
- 【猫狗数据集】使用预训练的resnet18模型
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...
- 【猫狗数据集】pytorch训练猫狗数据集之创建数据集
猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中,另一种是实现读取数据集类,该类继承tor ...
- 【猫狗数据集】利用tensorboard可视化训练和测试过程
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...
- 【猫狗数据集】谷歌colab之使用pytorch读取自己数据集(猫狗数据集)
之前在:https://www.cnblogs.com/xiximayou/p/12398285.html创建好了数据集,将它上传到谷歌colab 在colab上的目录如下: 在utils中的rdat ...
- kaggle之猫狗数据集下载
链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4 百度网盘实在是恶心,找的别人的网盘下载不仅速度慢,还老挂掉,自己去kaggle下 ...
- Pytorch实现Top1准确率和Top5准确率
之前一直不清楚Top1和Top5是什么,其实搞清楚了很简单,就是两种衡量指标,其中,Top1就是普通的Accuracy,Top5比Top1衡量标准更“严格”, 具体来讲,比如一共需要分10类,每次分类 ...
- 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...
- 使用pytorch完成kaggle猫狗图像识别
kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架 ...
- paddlepaddle实现猫狗分类
目录 1.预备工作 1.1 数据集准备 1.2 数据预处理 2.训练 2.1 模型 2.2 定义训练 2.3 训练 3.预测 4.参考文献 声明:这是我的个人学习笔记,大佬可以点评,指导,不喜勿喷.实 ...
随机推荐
- 数据库连接中断-spring-springBoot
问题:据库和应用在同一台机,数据库用mysql5.6.20,已经升级druid到最新的1.0.7版本,访问的是localhost的mysql,放一个晚上不访问,第二天访问就报错了,重启服务正常,错误提 ...
- Cortana携手微软学术搜索,变身研究人员最佳个人助理
编者按:在美国时间7月14日于微软总部雷蒙德召开的2014年微软教育峰会上,负责技术与研究的微软全球执行副总裁沈向洋博士在他的开幕主题演讲中正式宣布,Windows Phone 8.1系统中的虚拟个人 ...
- html和jsp页面中把文本框禁用,只能读不能写的方法
方法常用有三种: 第一种,使用 onfocus="this.blur()" <input name="deptno" type="text& ...
- 几个简单又实用的PHP函数
简单方便使用: /** * 将多维数组转为一维数组 * @param array $arr * @return array */ function ArrMd2Ud($arr) { #将数值第一元素作 ...
- github常用命令汇总
创立版本库 mkdir Baiducd Baidugit init SSHssh-keygen -t -rsa -C "TaylorApril947939@gmail"(在gith ...
- web虚拟主机的三种配置方法
- 吴裕雄--天生自然KITTEN编程:滂沱大雨
- tips [ 18870 ]
Created at 2017-08-23 Updated at 2018-01-31 Category 东方大陆 Tag 东方大陆 上面有编辑时间的,别吐槽说什么过期内容了使用 lightPIC图床 ...
- 用shell脚本新建文件并自动生成头说明信息
目标: 新建文件后,直接给文件写入下图信息 代码实现: [root@localhost test]# vi AutoHead.sh #!/bin/bash #此程序的功能是新建shell文件并自动生成 ...
- Android 代码混淆规则
1. Proguard介绍 Android SDK自带了混淆工具Proguard.它位于SDK根目录toolsproguard下面.ProGuard是一个免费的Java类文件收缩,优化,混淆和预校验器 ...