第十章:主成分模型与 VaR 分析

思维导图

一些想法

  • NS 家族模型的参数有经济意义,同时参数变化的行为类似主成分,考虑基于 NS 模型参数的风险度量。
  • 尝试用(多元)GARCH 滤波利率变化,对残差应用 PCA。

推导 PCD、PCC 和 KRD、KRC 的关系

利用主成分系数矩阵的正交性。

PCD 和 KRD

\[
\begin{aligned}
PCD(i) &= -\frac{1}{P} \frac{\partial P}{\partial c^*_i}\\&= -\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i}\\
&=-\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i} \sum_{j=1}^k \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \frac{\partial c_i}{\partial y(t_j)} \mu_{ij}\\
&=- \sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial y(t_j)} \mu_{ij}\\
&=\sqrt{\lambda_i}\sum_{j=1}^k KRD(j) \mu_{ij}\\
&=\sum_{j=1}^k KRD(j) l_{ji}
\end{aligned}
\]

PCC 和 KRC

\[
\begin{aligned}
PCC(i,j) &= -\frac{1}{P} \frac{\partial^2 P}{\partial c^*_i \partial c^*_j}\\
&=-\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \frac{\partial^2 P}{\partial c_i \partial c_j}\\
\end{aligned}
\]

其中

\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\frac{\partial\left(\frac{\partial P}{\partial c_i}\right)}{\partial c_j}\\
&=\frac{\partial\left(\sum_{l=1}^k \frac{\partial P}{\partial y(t_l)} \mu_{il}\right)}{\partial c_j}\\
&=\sum_{l=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{il}\\
\end{aligned}
\]

又有

\[
\begin{aligned}
\frac{\partial^2 P}{\partial y(t_l) \partial c_j}&=
\frac{\partial^2 P}{\partial y(t_l) \partial c_j} \sum_{n=1}^k \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \frac{\partial c_j}{\partial y(t_n)} \mu_{jn}\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn}\\
\end{aligned}
\]

所以

\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}
\end{aligned}
\]

最终

\[
\begin{aligned}
PCC(i,j) &= -\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}\\
&=\sum_{l=1}^k \sum_{n=1}^k KRC(l,n) l_{nj}l_{li}
\end{aligned}
\]

《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析的更多相关文章

  1. 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型

    目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...

  2. 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量

    目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的 ...

  3. 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构

    目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种

  4. 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性

    目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子

  5. 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览

    目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...

  6. 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲

    目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...

  7. 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析

    目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以 ...

  8. Keras 文档阅读笔记(不定期更新)

    目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...

  9. C++ Primer 第四版阅读笔记

    阅读笔记 初始化 变量定义指定了变量的类型和标识符,也可以为对象提供初始值.定义时指定了初始值的对象被称为是 已初始化的.C++ 支持两种初始化变量的形式:复制初始化和 直接初始化.复制初始化语法用等 ...

随机推荐

  1. log4j2 异步多线程打印日志

    log4j2 异步多线程打印日志 Maven依赖 <dependency> <groupId>org.apache.logging.log4j</groupId> ...

  2. 【协作式原创】查漏补缺之Go的slice基础和几个难点

    [转载]队友博客 Q: 为啥要字节对齐的 https://www.nowcoder.com/discuss/57978 TODO: Q: go反汇编指令 go tool compile -S plan ...

  3. 模块学习-time,datetime模块

    1 time.timezone #以秒为单位显示时区 >>> import time >>> time.timezone -28800 北京为东八区,所以为-288 ...

  4. js 中一些重要的字符串方法

    String 对象方法 方法 描述 charAt() 返回在指定位置的字符. charCodeAt() 返回在指定的位置的字符的 Unicode 编码. concat() 连接两个或更多字符串,并返回 ...

  5. tensorflow中的图(02-1)

    由于tensorflow版本迭代较快且不同版本的接口会有差距,我这里使用的是1.14.0的版本 安装指定版本的方法:pip install tensorflow==1.14.0      如果你之前安 ...

  6. JavaScript图形实例:图形的平移和对称变换

    1.1  六瓣花平移变换 平移变换是指图形从一个位置到另一个位置所作的直线移动.如果要把一个位于P(x,y)的点移到新位置P’(x’,y’),如图1,则只要在原坐标上加上平移距离Tx和Ty即可. 即  ...

  7. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表单:文本框(Textarea)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  8. Keras入门——(5)长短期记忆网络LSTM(二)

    参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...

  9. Linux centosVMware Vim介绍、vim颜色显示和移动光标、vim一般模式下移动光标、vim一般模式下复制、剪切和粘贴

    一.Vim介绍 vim 是一款功能强大的文本编辑器,是vi的升级版,带有颜色显示, 默认有三种模式:一般模式, 命令模式,  编辑模式   安装Vim [root@davery ~]# vim /et ...

  10. Day3-O-Median POJ3579

    Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - X ...