《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析
第十章:主成分模型与 VaR 分析
思维导图
一些想法
- NS 家族模型的参数有经济意义,同时参数变化的行为类似主成分,考虑基于 NS 模型参数的风险度量。
- 尝试用(多元)GARCH 滤波利率变化,对残差应用 PCA。
推导 PCD、PCC 和 KRD、KRC 的关系
利用主成分系数矩阵的正交性。
PCD 和 KRD
\[
\begin{aligned}
PCD(i) &= -\frac{1}{P} \frac{\partial P}{\partial c^*_i}\\&= -\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i}\\
&=-\sqrt{\lambda_i} \frac{1}{P} \frac{\partial P}{\partial c_i} \sum_{j=1}^k \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \mu_{ij}^2\\
&=-\sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial c_i} \frac{\partial c_i}{\partial y(t_j)} \mu_{ij}\\
&=- \sqrt{\lambda_i} \frac{1}{P} \sum_{j=1}^k \frac{\partial P}{\partial y(t_j)} \mu_{ij}\\
&=\sqrt{\lambda_i}\sum_{j=1}^k KRD(j) \mu_{ij}\\
&=\sum_{j=1}^k KRD(j) l_{ji}
\end{aligned}
\]
PCC 和 KRC
\[
\begin{aligned}
PCC(i,j) &= -\frac{1}{P} \frac{\partial^2 P}{\partial c^*_i \partial c^*_j}\\
&=-\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \frac{\partial^2 P}{\partial c_i \partial c_j}\\
\end{aligned}
\]
其中
\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\frac{\partial\left(\frac{\partial P}{\partial c_i}\right)}{\partial c_j}\\
&=\frac{\partial\left(\sum_{l=1}^k \frac{\partial P}{\partial y(t_l)} \mu_{il}\right)}{\partial c_j}\\
&=\sum_{l=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{il}\\
\end{aligned}
\]
又有
\[
\begin{aligned}
\frac{\partial^2 P}{\partial y(t_l) \partial c_j}&=
\frac{\partial^2 P}{\partial y(t_l) \partial c_j} \sum_{n=1}^k \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \mu_{jn}^2\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial c_j} \frac{\partial c_j}{\partial y(t_n)} \mu_{jn}\\
&=\sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn}\\
\end{aligned}
\]
所以
\[
\begin{aligned}
\frac{\partial^2 P}{\partial c_i \partial c_j}&=
\sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}
\end{aligned}
\]
最终
\[
\begin{aligned}
PCC(i,j) &= -\sqrt{\lambda_i}\sqrt{\lambda_j}\frac{1}{P} \sum_{l=1}^k \sum_{n=1}^k \frac{\partial^2 P}{\partial y(t_l) \partial y(t_n)} \mu_{jn} \mu_{il}\\
&=\sum_{l=1}^k \sum_{n=1}^k KRC(l,n) l_{nj}l_{li}
\end{aligned}
\]
《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析的更多相关文章
- 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型
目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...
- 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量
目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的 ...
- 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构
目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种
- 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性
目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子
- 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览
目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...
- 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲
目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...
- 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析
目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以 ...
- Keras 文档阅读笔记(不定期更新)
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...
- C++ Primer 第四版阅读笔记
阅读笔记 初始化 变量定义指定了变量的类型和标识符,也可以为对象提供初始值.定义时指定了初始值的对象被称为是 已初始化的.C++ 支持两种初始化变量的形式:复制初始化和 直接初始化.复制初始化语法用等 ...
随机推荐
- springboot+mybatis多数据源
首先,既然是多数据源,那么我们就先看下数据源怎么配置的: javaconfig类似下面这样: MapperScan注解常用配置如下: basePackages:Base packages to sca ...
- Java基础知识笔记第十章:输入输出流
File类 文件的属性 目录 文件的创建与删除 运行可执行文件 文件字节输入流 文件字节输出流 文件字符输入输出流 缓冲流 随机流 数组流 数据流 对象流 序列化与对象克隆 使用Scanner解析文件 ...
- 【PAT甲级】1037 Magic Coupon (25 分)
题意: 输入一个正整数N(<=1e5),接下来输入N个整数.再输入一个正整数M(<=1e5),接下来输入M个整数.每次可以从两组数中各取一个,求最大的两个数的乘积的和. AAAAAccep ...
- vue-cli 手脚架mock虚拟数据的运用,特别是坑!!!
1.现在基本的趋势就是前后分离,前后分离就意味着当后台接口还没完成之前,前端是没有接口可以拿来调用的 ,那么mock虚拟数据就很好的解决了这一问题,前端可以直接模拟真实的数据AJAX请求! 运用 步骤 ...
- C++的注册和回调
注册回调的作用 在设计模式中注册回调的方式叫做回调模式.在SDK开发中,为增强开发者的SDK通用性,排序或者一些算法逻辑需要使用者进行编写.这时候就需要向SDK传递回调函数.注册回调能使下层主动与上层 ...
- js加密(十)csti.cn md5
1. http://www.csti.cn/index.htm 2. 登录密码加密 3. 加密js: var hexcase = 0; var b64pad = ""; var c ...
- Java8 HashMap详解
Java8 HashMap Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成. 根据 Java7 HashMap 的介绍,我们知道,查找的 ...
- 2019上海爱奇艺大数据Java实习生-面试记录
目录 一轮 电话面试 二轮 代码笔试 三轮 技术面试 总结 附:电话面试问题点解惑 补充:面试未通过 一轮 电话面试 2019.04.28 16:21 [w]:面试官,[m]:我,下面的内容来自电话录 ...
- unittest---unittest生成测试报告
我们做测试的人员们都知道测试完成后,肯定是会生成一个测试报告,那么当我们做自动化的时候,这个自动化报告也可以自动生成吗?python当然可以了! HTMLTestRunner HTMLTestRunn ...
- 使用SourceTree的注意事项
1.我使用SourceTree时,使用的下面的配置全局忽略: *~ .DS_Store xcuserdata 2. 远程仓库的url路径不要使用域名,而应该使用ip地址.否则会显示“这是一个无效的ur ...