基因调控网络的概念在之前已经简要介绍过:https://www.cnblogs.com/pear-linzhu/p/12313951.html

沃丁顿表观遗传景观(The Waddington's epigenetic landscape) 是描述基因调控下细胞分化的动态性的一个经典的隐喻,是由沃丁顿在1957年提出的。他将细胞分化比喻作从高处沿山坡滚落下的小球,直到一个稳定的盆地 (basin),该盆地也就代表一定的分化状态。小球最开始能量较高,处于不稳定状态,对应干细胞等未分化的细胞状态,小球最终滚落于低能量的盆地,较稳定,对应分化后的细胞。小球(干细胞)沿着不同的路径最终可以进入不同的盆地(分化为不同的细胞)。图示如下:

接着介绍两篇数据驱动的建模 (建立landscape模型) 文章,两篇文章都是基于Artificial neural network中的Hopfield Network(HN)的,Artificial neural network也是构建基因调控网络的方法之一。第一篇基于离散的HN,第二篇基于连续的HN。

<Characterizing cancer subtypes as attractors of Hopfield networks [1]>

The GRN model of this paper is based on the artificial neural network, discretized Hopfield Network. In this paper, they use the static gene expression profiles to construct the discretized Hopfield Network to mapping cancer subtypes onto the attractors of the landscape.
Here’s a basic model of Hopfield Network:

Each node represents a gene, and its output as the gene expression value, that is, state. The state of a node will be updated by all of its neighbors’ states within an iteration. The formula as follows:

si(t) is the state of node i at time t, wij is the weight of the edge between node i and j.
The W will be learned by Hebbian learning.

P is the pattern matrix, p=sgn(D), D is the expression matrix.
After several iterations, we can get a stable state. And the stable state can be visualized by the expression matrix.

We can observe from the above figure that it gets into a stable state gradually, and the up and down parts corresponding to the subtype of cancer respectively, B-ALL and T-ALL. There is an error marked by a triangle in the upper stable state, but it won't influence the whole stable state.
Notably, they consider the sparse character of GRN, but the W learned by the Hebbian learning algorithm will be dense. They adopt a pruning method. At the premise of the accuracy of the classification of cells decrease within 20%, they delete the smaller weight edge.
Then, to visualize the landscape, they use the PCA to reduce dimension. As regular, they divide mesh on the 2D plane and do inverse PCA to map mesh points into the high dimensional space. Finally, based on the mesh points and true data points, we use the energy function E to plot them in the 3-dimensional space.

E is a Lyapunov function.
Finally, by interpolating values, we can get the landscape with the surface.

<HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape  [2]>

The GRN model of this paper is based on the artificial neural network, Continuous Hopfield Network (CHN). In this paper, Hopland constructs landscape using continuous Hopfield Landscape (CHN) based on the gene expression data. And the pseudotime is estimated by the geodesic distance on the landscape. In this paper, they think the biological system cannot be characterized by the two-state discretized Hopfield Network, but a continuous relationship between input and output. As same as the last paper, each neuron represents a gene in the neural network.
As far as the model of CHN, vi represents the output of neuron, namely, gene expression value, N is the gene number, the input of neuron consists of noise and other neurons' output. The change rate of neuron i can be modeled as:

Ci is an amplifier, Wij is the weight matrix, gj() is the activated function, a sigmoid function as a gj() here, it's monotone increasing to assure the stableness of system. δi is the degeneration rate of gene i, Ii is the outer input.
To inferred these parameters, they construct two objective functions to generate simulated data at the premise that a realistic model can generate simulated data consistent with the true data.

DF as the density function and the OBJ1 to assure the distribution of true data and simulated data is consistent. And I can't understand OBJ2 well.
A gradient descent learning algorithm is been used to update the parameters in the CHN.
The energy function here is also a Lyapunov function:

The steps of visualization of the landscape are consistent with the paper [1]. The only different point is the dimensionality reduction method, it uses nonlinear GP-LVM to replace the linear PCA. They think the nonlinear method is more suitable for biological information extraction.
To estimate the pseudotime, they use the fast marching algorithm to extract the geodesic distance and then construct the MST. The pseudotime of the ith cell is estimated as the distance between the corresponding tree node with the root node.

Ref:

[1]. Maetschke S R, Ragan M A. Characterizing cancer subtypes as attractors of Hopfield networks[J]. Bioinformatics, 2014, 30(9): 1273-1279.
[2]. Guo J, Zheng J. HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington’s epigenetic landscape[J]. Bioinformatics, 2017, 33(14).

基于基因调控网络(Hopfield network)构建沃丁顿表观遗传景观的更多相关文章

  1. 基因调控网络 (Gene Regulatory Network) 01

    本文为入门级的基因调控网络文章,主要介绍一些基本概念及常见的GRN模型. 概念:基因调控网络 (Gene Regulatory Network, GRN),简称调控网络,指细胞内或一个基因组内基因和基 ...

  2. 项目文章|DNA(羟)甲基化研究揭示铁离子依赖表观调控促进狼疮致病性T细胞分化|易基因

    易基因(羟)甲基化DNA免疫共沉淀测序(h)MeDIP-seq研究成果见刊<Journal of Clinical Investigation> 2022年5月2日,中南大学湘雅二医院赵明 ...

  3. 综述 - 染色质可及性与调控表观基因组 | Chromatin accessibility and the regulatory epigenome

    RNA-seq这个工具该什么时候用?ATAC-seq该什么时候用?有相当一部分项目设计不行,导致花大钱测了一些没有意义的数据. 还是在中心法则这个框架下来解释,这是生物信息的核心.打开华大科技服务官网 ...

  4. Hopfield Network 霍普菲尔德网络入门

    简介 Hopfield Network (霍普菲尔德网络),是 Hopfield 在1982年提出的一种基于能量的模型,发表的文章是 Neural networks and physical syst ...

  5. 【RS】Collaborative Memory Network for Recommendation Systems - 基于协同记忆网络的推荐系统

    [论文标题]Collaborative Memory Network for Recommendation Systems    (SIGIR'18) [论文作者]—Travis Ebesu (San ...

  6. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  7. Java - 网络编程(NetWork)

    Java - 网络编程(NetWork)   一.java.net包下的 InetAddress 类的使用:     > 一个 InetAddress 代表着一个IP地址     > 主要 ...

  8. 基于Spring Cloud和Netflix OSS构建微服务,Part 2

    在上一篇文章中,我们已使用Spring Cloud和Netflix OSS中的核心组件,如Eureka.Ribbon和Zuul,部分实现了操作模型(operations model),允许单独部署的微 ...

  9. Kubernetes之网络策略(Network Policy)

    系列目录 概述 Kubernetes要求集群中所有pod,无论是节点内还是跨节点,都可以直接通信,或者说所有pod工作在同一跨节点网络,此网络一般是二层虚拟网络,称为pod网络.在安装引导kubern ...

随机推荐

  1. 《Java面试全解析》1000道面试题大全详解(转)

    <Java面试全解析>1000道 面试题大全详解 本人是 2009 年参加编程工作的,一路上在技术公司摸爬滚打,前几年一直在上海,待过的公司有 360 和游久游戏,因为自己家庭的原因,放弃 ...

  2. plsql调用执行存储过程

    参考 https://www.cnblogs.com/enjoyjava/p/9131169.html ------------------------------------------------ ...

  3. WTM框架在开发过程中如何动态迁移表和创建表

    官方迁移方法:https://wtmdoc.walkingtec.cn/#/Data/Migration 但是在实际开发过程中使用Add-Migration 方法迁移会发现,把系统内置的表也全部带出来 ...

  4. EBP寻址

    一.EBP寻址 ESP:栈顶指针 (程序对与堆栈的使用 使用到哪里,esp就是哪里) EBP:  栈底指针 之前都是借用ESP去寻址确定一些参数 ,但如果存到堆栈里面的值过多,那么就得不断地调整ESP ...

  5. 097-PHP循环使用next取数组元素二

    <?php function return_item($arr, $num = 0) { //定义函数 if ($num < 0) { end($arr); //将数组指针指向最后一个元素 ...

  6. 【NOIP2009】Hankson的趣味题

    题意:给出 \(a_0\), \(a_1\), \(b_0\), \(b_1\), 求出正整数 \(x\) 的个数,\(x\) 满足: \(gcd(x,a_0)=a_1\) , \(lcm(x, b_ ...

  7. springboot项目 线程消费队列注入报错误空指针

    背景: 在调用阿里云隐私保护有一个通话记录的回执消息是一个消费线程队列,这个还别人告诉我的,因为我根本没有看出来哪里是个线程了,然后我就把它当成普通的代码拿到返回值以后然后插入数据库 可是我这边该加的 ...

  8. mysql 分组查询教程

    1.分组 分组就是将一个“数据集”划分成若干个“小区域”,然后针对若干个“小区域”进行数据处理. 2.分组的特点 1.)group by的含义:将查询结果按照1个或多个字段进行分组,字段值相同的为一组 ...

  9. weex框架

    weex优势: (1)支持ES6规范 (2)性能优异,开发简介标准,提及小巧. (3)跨平台 weex调试工具:weexplayground weex环境搭建: (1)安装 node.js.npm ( ...

  10. Android-寒假学习-阶段总结(20集)-口算测试APP

    说在前面: 1.视频教程:https://www.bilibili.com/video/av60445113/?spm_id_from=333.788.videocard.0 2.老师的源码:http ...