Spark性能调优之合理设置并行度
Spark性能调优之合理设置并行度
1.Spark的并行度指的是什么?
task没有设置,或者设置的很少,比如就设置了,100个task 。 50个executor ,每个executor 有3个core ,也就是说
Application 任何一个stage运行的时候,都有总数150个cpu core ,可以并行运行。但是,你现在只有100个task ,平均分配一下,每个executor 分配到2个task,ok,那么同时在运行的task,只有100个task,每个executor 只会并行运行 2个task。 每个executor 剩下的一个cpu core 就浪费掉了!你的资源,虽然分配充足了,但是问题是, 并行度没有与资源相匹配,导致你分配下去的资源都浪费掉了。合理的并行度的设置,应该要设置的足够大,大到可以完全合理的利用你的集群资源; 比如上面的例子,总共集群有150个cpu core ,可以并行运行150个task。那么你就应该将你的Application 的并行度,至少设置成150个,才能完全有效的利用你的集群资源,让150个task ,并行执行,而且task增加到150个以后,即可以同时并行运行,还可以让每个task要处理的数量变少; 比如总共 150G 的数据要处理, 如果是100个task ,每个task 要计算1.5G的数据。 现在增加到150个task,每个task只要处理1G数据。
2.如何去提高并行度?
1、task数量,至少设置成与spark Application 的总cpu core 数量相同(最理性情况,150个core,分配150task,一起运行,差不多同一时间运行完毕)官方推荐,task数量,设置成spark Application 总cpu core数量的2~3倍 ,比如150个cpu core ,基本设置 task数量为 300~ 500. 与理性情况不同的,有些task 会运行快一点,比如50s 就完了,有些task 可能会慢一点,要一分半才运行完,所以如果你的task数量,刚好设置的跟cpu core 数量相同,可能会导致资源的浪费,因为 比如150task ,10个先运行完了,剩余140个还在运行,但是这个时候,就有10个cpu core空闲出来了,导致浪费。如果设置2~3倍,那么一个task运行完以后,另外一个task马上补上来,尽量让cpu core不要空闲。同时尽量提升spark运行效率和速度。提升性能。
2、如何设置一个Spark Application的并行度?
spark.defalut.parallelism 默认是没有值的,如果设置了值比如说10,是在shuffle的过程才会起作用(val rdd2 = rdd1.reduceByKey(_+_) //rdd2的分区数就是10,rdd1的分区数不受这个参数的影响)
new SparkConf().set(“spark.defalut.parallelism”,”“500)
Spark性能调优之合理设置并行度的更多相关文章
- Spark 性能调优-内存设置-GC设置
http://mt.sohu.com/20150604/n414449770.shtml http://my.oschina.net/mkh/blog/330386 http://itindex.ne ...
- [Spark性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质 ...
- Spark性能调优之解决数据倾斜
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据 • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...
- spark 性能调优(一) 性能调优的本质、spark资源使用原理、调优要点分析
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论 ...
- Spark性能调优之代码方面的优化
Spark性能调优之代码方面的优化 1.避免创建重复的RDD 对性能没有问题,但会造成代码混乱 2.尽可能复用同一个RDD,减少产生RDD的个数 3.对多次使用的RDD进行持久化(ca ...
- Spark性能调优之资源分配
Spark性能调优之资源分配 性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了 ...
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- Spark性能调优:广播大变量broadcast
Spark性能调优:广播大变量broadcast 原文链接:https://blog.csdn.net/leen0304/article/details/78720838 概要 有时在开发过程中,会遇 ...
- Spark性能调优之JVM调优
Spark性能调优之JVM调优 通过一张图让你明白以下四个问题 1.JVM GC机制,堆内存的组成 2.Spark的调优为什么会和JVM的调 ...
随机推荐
- Java Error : type parameters of <T>T cannot be determined during Maven Install
遇到了一个问题如下: Caused by the combination of generics and autoboxing. 这是由于泛型和自动装箱联合使用引起的. 可以查看以下两个回答: 1 ...
- readAsDataURL(file) & readAsText(file, encoding)
readAsDataURL(file)会把文件内容转换为data类型的URL: data:text/plain;base64,b3JkZXItaWQJb3JkZXItaXRlbS1p... 这种d ...
- Rstudio( bioconductor)下载太慢,用国内镜像
在Rstudio中,下载软件install.packages()和 bioconductor软件下载命令 source("http://bioconductor.org/biocLite.R ...
- 使用trim_galore软件遇到的问题
我的原始测序数据是双端测序,在用trim_galore软件去接头的这一步,使用的命令行是 time nohup trim_galore R17002628-SKOV3-m6A_combined_R1. ...
- docker 保存 加载(导入 导出镜像
tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...
- rsync服务器的搭建
Rsync(remote synchronize)是一个远程数据同步工具,简要的概括就是主机于主机之间的文件目录数据的一个同步.下面就是rsync服务器的搭建过程. 系统环境 平台:Centos ...
- lastIndex对正则结果的影响
前言 今天遇到一个问题,用正则表达式去检查同一个字符串时,交替返回true和false.无奈之下,重新翻了翻权威指南,发现罪魁祸首原来是lastIndex.可在控制台尝试下 let reg = /[\ ...
- [js高手之路] html5 canvas教程 - 绘制七巧板
七巧板长什么样? 用canvas把他画出来,其实就是把这7个区域的图形,每个点的坐标找出来,再用moveTo, lineTo连线,设置不同的颜色即可. <head> <meta ch ...
- 6.前端基于react,后端基于.net core2.0的开发之路(6) 服务端渲染(SSR)
0.源码地址 https://gitee.com/teambp/ScaffoldClient 这个地址下载对应源码. 1.服务端渲染是啥? 就是在服务器进行页面渲染(废话),当页面展示后,显示的就是 ...
- 前端工程之CDN部署
之前发的一篇文章<变态的静态资源缓存与更新>中提到了静态资源和页面部署之间的时间间隙问题,这个问题会迫使前端静态资源发布必须采用非覆盖式. 那篇文章中没有详细解释为什么会产生不可忍受的时间 ...