转载请标明出处http://www.cnblogs.com/haozhengfei/p/24cb3f38b55e5d7516d8059f9f105eb6.html


保序回归

1.线性回归VS保序回归

   • 线性回归->线性拟合
   • 保序回归->保序的分段线性拟合,保序回归是拟合原始数据最佳的单调函数

1.1保序回归

 
    保序回归是特殊的线性回归,如果业务上具有单调性,这时候就可以用保序回归,而不是用线性回归。

1.2保序回归应用场景

    药剂和中毒的预测,剂量和毒性呈非递减函数

1.3保序回归模型使用

• 预测规则:
   – 如果预测输入能准确匹配训练特征,那么返回相关预测,如果有多个预测匹配训练特征,那么就返回其中之一。
   – 如果预测输入比所有的训练特征低或者高,那么最低和最高的训练特征各自返回。如果有多个预测比所有的训练特征低或者高,那么都会返回。
   – 如果预测输入介于两个训练特征,那么预测会被视为分段线性函数和从最接近的训练特征中计算得到的插值。

1.4保序回归code

IsotonicRegression_new
 import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.regression.{IsotonicRegressionModel, IsotonicRegression} /**
* Created by hzf
*/
object IsotonicRegression_new {
// F:\额外项目\pensionRisk\data\IsR\train\sample_isotonic_regression_data.txt F:\额外项目\pensionRisk\data\IsR\model true local
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
if (args.length < 4) {
System.err.println("Usage: LRwithLGD <inputPath> <modelPath> Isotonic <master> [<AppName>]")
System.err.println("eg: hdfs://192.168.57.104:8020/user/000000_0 hdfs://192.168.57.104:8020/user/model true spark://192.168.57.104:7077 IsotonicRegression")
System.exit(1)
}
val appName = if (args.length > 4) args(4) else "IsotonicRegression"
val conf = new SparkConf().setAppName(appName).setMaster(args(3))
val sc = new SparkContext(conf)
var isotonic = true
isotonic = args(2) match {
case "true" => true
case "false" => false
}
val data = sc.textFile(args(0))
val parsedData: RDD[(Double, Double, Double)] = data.map { line =>
val parts = line.split(',').map(_.toDouble)
(parts(0), parts(1), 1.0)
} val splitRdd: Array[RDD[(Double, Double, Double)]] = parsedData.randomSplit(Array(1.0, 9.0))
val testData = splitRdd(0)
val realTrainData: RDD[(Double, Double, Double)] = splitRdd(1) val model: IsotonicRegressionModel = new IsotonicRegression().setIsotonic(isotonic).run(realTrainData)
val predictionAndLabel = testData.map { point =>
val predictedLabel = model.predict(point._2)
(predictedLabel, point._1)
} val meanSquaredError = predictionAndLabel.map { case p => math.pow((p._1 - p._2), 2) }.mean()
println("meanSquaredError = " + meanSquaredError)
model.boundaries.zip(model.predictions).foreach(println(_))
model.save(sc, args(1)) }
}
设置运行参数
  1. E:\IDEA_Projects\mlib\data\IsR\train\sample_isotonic_regression_data.txt E:\IDEA_Projects\mlib\data\IsR\model true local

 

MLlib--保序回归的更多相关文章

  1. Spark Mllib里如何采用保序回归做回归分析(图文详解)

    不多说,直接上干货! 相比于决策树,保序回归的应用范围没有决策树算法那么广泛. 特别在数据处理较为庞大的时候,采用保序回归做回归分析,可以极大地节省资源,从而提高计算效率. 保序回归的思想,是对数据进 ...

  2. Spark机器学习(3):保序回归算法

    保序回归即给定了一个无序的数字序列,通过修改其中元素的值,得到一个非递减的数字序列,要求是使得误差(预测值和实际值差的平方)最小.比如在动物身上实验某种药物,使用了不同的剂量,按理说剂量越大,有效的比 ...

  3. 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)

    目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/ ...

  4. scikit-learn一般实例之一:保序回归(Isotonic Regression)

    对生成的数据进行保序回归的一个实例.保序回归能在训练数据上发现一个非递减逼近函数的同时最小化均方误差.这样的模型的好处是,它不用假设任何形式的目标函数,(如线性).为了比较,这里用一个线性回归作为参照 ...

  5. 机器学习:保序回归(IsotonicRegression):一种可以使资源利用率最大化的算法

    1.数学定义 保序回归是回归算法的一种,基本思想是:给定一个有限的实数集合,训练一个模型来最小化下列方程: 并且满足下列约束条件: 2.算法过程说明 从该序列的首元素往后观察,一旦出现乱序现象停止该轮 ...

  6. scikit-learn: isotonic regression(保序回归,非常有意思,仅做知识点了解,但差点儿没用到过)

    http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#example-plot-isotonic-reg ...

  7. 103 保序回归 isotonic regression

    103 保序回归 isotonic regression 2016-03-30 11:25:27 bea_tree 阅读数 6895   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权 ...

  8. 掌握Spark机器学习库-07.14-保序回归算法实现房价预测

    数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...

  9. 2015-4-2的阿里巴巴笔试题:乱序的序列保序输出(bit数组实现hash)

    分布式系统中的RPC请求经常出现乱序的情况.写一个算法来将一个乱序的序列保序输出.例如,假设起始序号是1,对于(1, 2, 5, 8, 10, 4, 3, 6, 9, 7)这个序列,输出是:123, ...

随机推荐

  1. 学习时用的软件最新 开发环境为Visual Studio 2010,数据库为SQLServer2005,使用.net 4.0开发。 超市管理系统

    一.源码特点 1.采用典型的三层架构进行开发.模板分离,支持生成静态 伪静态..购物车.登陆验证.div+css.js等技术二.功能介绍 1.本源码是一个超市在线购物商城源码,该网上商城是给超市便利店 ...

  2. java-FFmpeg(一) 实现视频的转码和截图功能

    FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件).它提供了录制.转换以及流化音视频的完整解决方案.它包含了非常先进的音频/视频编解码库l ...

  3. ubuntu环境下python虚拟环境的安装

    一. 虚拟环境搭建 在开发中安装模块的方法: pip install 模块名称 之前我们安装模块都是直接在物理环境下安装,这种安装方法,后面一次安装的会覆盖掉前面一次安装的.那如果一台机器上面开发多个 ...

  4. 使用Template格式化Python字符串

    对Python字符串,除了比较老旧的%,以及用来替换掉%的format,及在python 3.6中加入的f这三种格式化方法以外,还有可以使用Template对象来进行格式化. from string ...

  5. 测试BUG记录模板(供参考)

    文档说明如下: Bug严重程度: A-崩溃的:由于程序所引起的死机.非法退出.死循环:数据库发生死锁:因错误操作导致的程序中断:主要功能错误:造成数据破坏丢失或数据异常:数据库连接错误:数据通讯错误. ...

  6. VMware仅主机模式虚拟机无法ping通物理机

    问题描述 在VMware Workstation中新建了一个虚拟机CentOS7,网络适配器选择的是"仅主机模式",结果,物理机ping不通虚拟机,虚拟机也ping不通物理机. 原 ...

  7. ASP.NET MVC 设置区域默认定向

    public override void RegisterArea(AreaRegistrationContext context) { context.MapRoute( "m_defau ...

  8. Java学习笔记26(Math类、Arrays类、BigInteger类、BigDecimal类)

    Math类:数学工具类,做一些数学计算,开方,对数,三角函数等 所有方法都是静态方法,不需要建立对象,直接用类名调用即可 示例: 这里写几个在日常开发中会用到的,比如三角函数之类的平时不会用到,了解即 ...

  9. C/C++知识点清单01

    第一章 C/C++程序基础 一.一般赋值语句: 考察一般赋值语句的概念和方法. 1.程序: #include<stdio.h> int main(void) { ,y,z; x*=(y=z ...

  10. echart

    先介绍echart: 官网: http://echarts.baidu.com  看名字就知道是百度出品的.       ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC ...