最近接触了动态规划这个厉害的方法,还在慢慢地试着去了解这种思想,因此就在LeetCode上面找了几道比较简单的题目练了练手。

首先,动态规划是什么呢?很多人认为把它称作一种“算法”,其实我认为把它称作一种“思想”更为合适;利用动态规划去解决问题,其实就是逐步递推的过程,与贪心算法不同,动态规划递推的每一步都要求是当前的最优解(这是很重要的,递推的正确性依赖的就是这一点);利用动态规划解题时,必须自己定义出来状态和状态转移方程。然而,看上去简单,做起来却非常困难,因为解题时的具体形式千差万别,找出问题的子结构以及通过子结构重新构造最优解的过程很难统一。

经典的动态规划题目有背包问题、硬币问题等等,可以通过这些题目去理解一下这个东西。

我认为,动态规划最难的就是找出状态方程。同时,个人认为比较难理解的一点是,懂得“前面每一步都是最优解”这个前提。

废话不多说,直接看看LeetCode上简单的动态规划题目。

要注意的是,下面的三题都用到了局部最优和全局最优解法:

1.Jump Game

原题地址:https://leetcode.com/problems/jump-game/description/

解法:

用一个global变量保存到目前为止能跳的最远距离,用一个local变量保存当前一步出发能跳的最远距离,这题里面的状态就是走到每一步时的global[i]值,状态转移方程就是global[i] =max{nums[i] + i, global[i-1]}。当然,写代码的时候用变量代替数组即可。

class Solution {
public:
bool canJump(vector<int>& nums) {
  int reach = ;
  for (int i = ; i < nums.size() - && reach >= i; i++) {
  reach = nums[i] + i > reach ? nums[i] + i : reach;
  }
  return reach >= nums.size() - ;
  }
};

2.Maximum Subarray

原题地址:https://leetcode.com/problems/maximum-subarray/description/

解法:

这一题要维护两个变量:global和local,与上面一题一样,local保存包含当前元素的最大值(局部最优),global保存的是所有情况里面的最大值(全局最优)。假设第i步的local[i]和global[i]已知,那么第i+1步的local[i + 1] = max{ nums[i] + local[i], nums[i + 1] },global[i + 1]  = max{global[i], local[i + 1]}。代码如下:

class Solution {
public:
int maxSubArray(vector<int>& nums) {
  int global = nums[], local = nums[];
  for (int i = ; i < nums.size(); i++) {
  local = nums[i] > nums[i] + local ? nums[i] : nums[i] + local;
  global = local > global ? local : global;
  }
  return global;
  }
};

3.Best Time to Buy and Sell Stock

原题地址:https://leetcode.com/problems/best-time-to-buy-and-sell-stock/description/

这道题目有两种方法,其实都是动态规划:

(1)

class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == ) return ;
  int maxPrice = prices[prices.size() - ];
   int res = ;
  for (int i = prices.size() - ; i >= ; i--) {
  maxPrice = max(maxPrice, prices[i]);
  res = max(res, maxPrice - prices[i]);
  }
  return res;
  }
};

这种解法在这个博客里面讲得很详细:http://www.cnblogs.com/remlostime/archive/2012/11/06/2757434.html

(2)局部最优和全局最优解法:

class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == ) return ;
  int local = , global = ;
  for (int i = ; i < prices.size(); i++) {
  local = max(, local + prices[i] - prices[i - ]);
  global = max(local, global);
  }
   return global;
  }
};
local = max(0, local + prices[i] - prices[i - 1])这一句,我一开始在考虑:为什么不写成local = max(local, local + prices[i] - prices[i - 1])呢?
后来想了一下,因为假如这样写,有可能得到的就不是包含当前元素的局部最优解了。所以,在“局部最优和全局最优解法”里面,永远不会出现local=local的情况。 4.Minimum Path Sum
原题地址:https://leetcode.com/problems/minimum-path-sum/description/
这道题目不需用到上面的“局部最优和全局最优”解法,只需要每次选出最优的即可。除了边界的元素,其他元素的最优都是 min{min[i - 1][j] + grid[i][j],min[i][j - 1] + grid[i][j]
}。
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int ** min = new int*[grid.size()];
for (int i = ; i < grid.size(); i++) {
min[i] = new int[grid[i].size()];
}
min[][] = grid[][];
for (int i = ; i < grid.size(); i++) {
for (int j = ; j < grid[i].size(); j++) {
if (i == && j == ) continue;
else if (i == ) min[i][j] = min[i][j - ] + grid[i][j];
else if (j == ) min[i][j] = min[i - ][j] + grid[i][j];
else min[i][j] = min[i - ][j] + grid[i][j] < min[i][j - ] + grid[i][j] ? min[i - ][j] + grid[i][j] : min[i][j - ] + grid[i][j] ;
}
}
return min[grid.size() - ][grid[grid.size() - ].size() - ];
return ;
}
};

5.Triangle
地址:https://leetcode.com/problems/triangle/description/
也是一道典型的dp题目,思想跟上面一题差不多:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if (triangle.size() == ) return triangle[][];
int ** min = new int *[triangle.size()];
for (int i = ; i < triangle.size(); i++) {
min[i] = new int[triangle[i].size()];
}
min[][] = triangle[][];
int res = INT_MAX;
for (int i = ; i < triangle.size(); i++) {
for (int j = ; j < triangle[i].size(); j++) {
if (i == && j == ) continue;
else if (j == ) min[i][j] = min[i - ][j] + triangle[i][j];
else if (j == triangle[i].size() - ) min[i][j] = min[i - ][j - ] + triangle[i][j];
else min[i][j] = min[i - ][j - ] + triangle[i][j] < min[i - ][j] + triangle[i][j] ? min[i - ][j - ] + triangle[i][j] : min[i - ][j] + triangle[i][j];
if (min[i][j] < res && i == triangle.size() - ) {
res = min[i][j];
}
}
}
return res;
}
};
但这道题有趣的地方在于,空间复杂度可以缩小到O(n):我们把这个三角形倒过来看,便能发现可以通过复用一个一维数组来储存最小值:
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
vector<int> min = triangle[triangle.size() - ];
for (int i = triangle.size() - ; i >= ; i--) {
for (int j = ; j <= i; j++) {
min[j] = min[j] < min[j + ] ? min[j] + triangle[i][j] : min[j + ] + triangle[i][j];
}
}
return min[];
}
};


[LeetCode] 动态规划入门题目的更多相关文章

  1. 洛谷P1028 数的计算 题解 动态规划入门题

    题目链接:https://www.luogu.com.cn/problem/P1028 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数 \(n\) ): 先输入一个自然数 \(n(n \ ...

  2. 快速上手leetcode动态规划题

    快速上手leetcode动态规划题 我现在是初学的状态,在此来记录我的刷题过程,便于以后复习巩固. 我leetcode从动态规划开始刷,语言用的java. 一.了解动态规划 我上网查了一下动态规划,了 ...

  3. leetcode - 位运算题目汇总(下)

    接上文leetcode - 位运算题目汇总(上),继续来切leetcode中Bit Manipulation下的题目. Bitwise AND of Numbers Range 给出一个范围,[m, ...

  4. leetcode top 100 题目汇总

    首先表达我对leetcode网站的感谢,与高校的OJ系统相比,leetcode上面的题目更贴近工作的需要,而且支持的语言广泛.对于一些比较困难的题目,可以从讨论区中学习别人的思路,这一点很方便. 经过 ...

  5. poj 2186 强连通入门题目

    每头牛的梦想就是成为牛群中最受欢迎的牛. 在一群N(1 <= N <= 10,000)母牛中, 你可以得到M(1 <= M <= 50,000)有序的形式对(A,B),告诉你母 ...

  6. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  7. 树形DP入门题目推荐以及解析

    关于树形DP几道入门题目 今天恶补树形DP,感觉海星. 其实挺简单的. 介绍几道例题,我会的. 1.洛谷P1352 没有上司的舞会 我的一篇题解 我们可以考虑每一个节点都是有两种情况. 一个是被邀请: ...

  8. leetcode tree相关题目总结

    leetcode tree相关题目小结 所使用的方法不外乎递归,DFS,BFS. 1. 题100 Same Tree Given two binary trees, write a function ...

  9. 草地排水 洛谷P2740 最大流 入门题目

    草地排水 洛谷P2740 最大流入门题目 题意 在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水.这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间.因此,农夫约翰修建了一 ...

随机推荐

  1. 预加载(图片,css ,js)

    图片预加载 new Image().src = 'http://img1.t.sinajs.cn/t35/skin/skin_008/skin.css'; //新浪(4) 非ie下预加载(js,css ...

  2. Nodejs学习笔记(十六)--- Pomelo介绍&入门

    目录 前言&介绍 安装Pomelo 创建项目并启动 创建项目 项目结构说明 启动 测试连接 聊天服务器 新建gate和chat服务器 配置master.json 配置servers.json ...

  3. openvpn部署之快速入门实战+一键部署openvpn脚本

    个人原创禁止转载 软件环境: Centos6.9 x64 openvpn-2.4.3-1.el6.x86_64.rpm easy-rsa-2.2.2-1.el6.noarch.rpm    #推荐使用 ...

  4. python实战===如何优雅的打飞机

    这是一个打飞机的游戏,结构如下: 其中images中包含的素材为 命名为alien.png    命名为ship.png 游戏效果运行是这样的: 敌军,也就是体型稍微大点的,在上方左右移动,并且有规律 ...

  5. Mysql update in报错 [Err] 1093 - You can't specify target table 'company_info' for update in FROM clause

    Mysql update in报错 解决方案: [Err] 1093 - You can't specify target table 'company_info' for update in FRO ...

  6. 使用 Bundle 在 Activity 之间交换数据

    [toc] 使用 Bundle 在 Activity 之间交换数据 场景 当一个 Activity 启动另一个 Activity 时,常常会有一些数据需要传过去.因为两个 Activity 之间本来就 ...

  7. XSD详解二 - 简易元素、属性、内容限定

    一.XSD 简易元素 XML Schema 可定义 XML 文件的元素. 简易元素指那些只包含文本的元素.它不会包含任何其他的元素或属性. 1.什么是简易元素? 简易元素指那些仅包含文本的元素.它不会 ...

  8. Failed to load the JNI shared lib...

    启动eclipse报错:Failed to load the JNI shared lib... 解决办法如下:保证JDK与eclipse相匹配 在同一台计算机中,如果JDK是32位的,那么eclip ...

  9. vue搭建环境

    大早起的,没想自己起来那么早,既然起来了,就写点东西吧~最近在看Vue的东西,发现网上也是好多的资源,包括博客和视频 , 我是看的慕课网上的vue ,名字忘记了,价格148的,看了,也整理了笔记,看了 ...

  10. poj 3111 K Best 最大化平均值 二分思想

    poj 3111 K Best 最大化平均值 二分思想 题目链接: http://poj.org/problem?id=3111 思路: 挑战程序竞赛书上讲的很好,下面的解释也基本来源于此书 设定条件 ...