Problem Description
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

 
Input
There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.
 
Output
For every number N, output a single line containing the single non-negative integer Z(N).
 
Sample Input
6
3
60
100
1024
23456
8735373
 
Sample Output
0
14
24
253
5861
2183837
 
Code:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <ctype.h> using namespace std; /*N!末尾的0一定是由2*5产生的。 而且2因子的个数一定比5因子的个数多。 所以只需要求N!的5因子的个数。 用到了一个数论知识: 若p是质数,p<=n,则n!是p的倍数,设p^x是p在n!内的最高幂,则 x=[n/p]+[n/p^2]+[n/p^3]+............;
int a[50000];*/ int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long n;
scanf("%ld",&n);
int cnt=,k=n/;
while(k>)
{
cnt+=k;
k/=;
}
printf("%d\n",cnt);
}
return ;
}

HDU1124 Factorial的更多相关文章

  1. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. CodeForces 515C. Drazil and Factorial

    C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  4. [codeforces 516]A. Drazil and Factorial

    [codeforces 516]A. Drazil and Factorial 试题描述 Drazil is playing a math game with Varda. Let's define  ...

  5. LeetCode Factorial Trailing Zeroes

    原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...

  6. 【LeetCode】172. Factorial Trailing Zeroes

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your ...

  7. SPOJ #11 Factorial

    Counting trailing 0s of n! It is not very hard to figure out how to count it - simply count how many ...

  8. 欧拉工程第74题:Digit factorial chains

    题目链接:https://projecteuler.net/problem=74 数字145有一个著名的性质:其所有位上数字的阶乘和等于它本身. 1! + 4! + 5! = 1 + 24 + 120 ...

  9. CF Drazil and Factorial (打表)

    Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. mysql字符编码设置

    1.显示当前编码信息 mysql>show variables like '%character%' +--------------------------+------------------ ...

  2. Bash命令行编辑

    1.Readline库和命令行编辑 bash shell提供了两个内置编辑器:emacs和vi,利用它们可以以交互模式对命令行列表进行编辑,这项特性是通过Readline库的软件包实现的.当使用命令行 ...

  3. python 自定义回调函数

    回调函数用起来比较爽.特别是在js中,满世界全是回调,那么在python中,怎么来优雅地实现自己的回调函数呢 下面贴一个我写的例子 class BaseHandler(object): def cra ...

  4. PHPCMS V9里加入JS时生成首页出错

    有次在首页中加入JS,确认JS没有问题,但是在后台生成首页的时候一直出错. 查了半天才发现原来是JS里的“{}”问题,V9里调用内容也是用的大括号,冲突了. 解决方法是在“{”前面和后面分别加一个空格 ...

  5. uwp版的音乐播放器练手

    UWP项目之音乐播放器 这个项目本来是我女朋友的一个小作业,她做不出来,结果只能是我来代劳.经过几天的时间虽然赶出来了,但是自己不是很满意,还有很多不满意的地方,因此决定在最近的一段时间内,重新完成. ...

  6. Java学习笔记--反射API

    反射API 1.反射API的介绍 通过反射API可以获取Java程序在运行时刻的内部结构.比如Java类中包含的构造方法.域和方法等元素,并可以与这些元素进行交换.     按照 一般地面向对象的设计 ...

  7. 【Android Developers Training】 7. 添加Action Buttons

    注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...

  8. 如何使用mybatis对mysql数据库进行操作,batis的增删改查

    1.先下载Mybatis和mysql connecrt的jar包 下载地址: 链接: https://pan.baidu.com/s/1kVFfF8N 密码: ypkb 导入jar包,maven的话可 ...

  9. date时间转换

    <!DOCTYPE html> <head> <meta http-equiv="Content-Type" content="text/h ...

  10. Ext ApplicationController&ref的使用

    Ext ApplicationController&ref的使用 Ext.define('app.controller.ApplicationController', { //继承 Ext.a ...