Problem Description
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically. 
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high even for a relatively small N.

The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1<N2, then Z(N1) <= Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

 
Input
There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.
 
Output
For every number N, output a single line containing the single non-negative integer Z(N).
 
Sample Input
6
3
60
100
1024
23456
8735373
 
Sample Output
0
14
24
253
5861
2183837
 
Code:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <ctype.h> using namespace std; /*N!末尾的0一定是由2*5产生的。 而且2因子的个数一定比5因子的个数多。 所以只需要求N!的5因子的个数。 用到了一个数论知识: 若p是质数,p<=n,则n!是p的倍数,设p^x是p在n!内的最高幂,则 x=[n/p]+[n/p^2]+[n/p^3]+............;
int a[50000];*/ int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long n;
scanf("%ld",&n);
int cnt=,k=n/;
while(k>)
{
cnt+=k;
k/=;
}
printf("%d\n",cnt);
}
return ;
}

HDU1124 Factorial的更多相关文章

  1. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  2. CodeForces 515C. Drazil and Factorial

    C. Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  4. [codeforces 516]A. Drazil and Factorial

    [codeforces 516]A. Drazil and Factorial 试题描述 Drazil is playing a math game with Varda. Let's define  ...

  5. LeetCode Factorial Trailing Zeroes

    原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...

  6. 【LeetCode】172. Factorial Trailing Zeroes

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your ...

  7. SPOJ #11 Factorial

    Counting trailing 0s of n! It is not very hard to figure out how to count it - simply count how many ...

  8. 欧拉工程第74题:Digit factorial chains

    题目链接:https://projecteuler.net/problem=74 数字145有一个著名的性质:其所有位上数字的阶乘和等于它本身. 1! + 4! + 5! = 1 + 24 + 120 ...

  9. CF Drazil and Factorial (打表)

    Drazil and Factorial time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. Android 图片加载框架Glide4.0源码完全解析(二)

    写在之前 上一篇博文写的是Android 图片加载框架Glide4.0源码完全解析(一),主要分析了Glide4.0源码中的with方法和load方法,原本打算是一起发布的,但是由于into方法复杂性 ...

  2. java基础:简单实现线程池

    前段时间自己研究了下线程池的实现原理,通过一些源码对比,发现其实核心的东西不难,于是抽丝剥茧,决定自己实现一个简单线程池,当自已实现了出一个线程池后.发现原来那么高大上的东西也可以这么简单. 先上原理 ...

  3. 解决arcgis javascript textsymbol不支持多行文本标注的问题

    首先,下载这段js文件,命名为esri.symbol.MultiLineTextSymbol.js require(["esri/layers/LabelLayer"], func ...

  4. 如何在linux如何安装nginx服务器

    1.进入命令窗口: 2.进入nginx.org 网站 下载安装包nginx-1.8.0.tar.gz 3.进入下载的文件夹 4.加压下载的压缩包 tar  -zxvf nginx-1.8.0.tar. ...

  5. SQL SERVER 使用BULK Insert将txt文件中的数据批量插入表中(1)

    1/首先建立数据表 CREATE TABLE BasicMsg( RecvTime FLOAT NOT NULL , --接收时间,不存在时间相同的数据 AA INT NOT NULL, --24位地 ...

  6. 2.配置Spring+SpringMvc+Mybatis(分库or读写分离)--Intellij IDAE 2016.3.5

    建立好maven多模块项目后,开始使用ssm传统的框架: 1.打开总工程下的pom.xml文件:添加如下代码: <!--全局的所有版本号定义--> <properties> & ...

  7. Discuz开发帮助

    http://ishare.iask.sina.com.cn/f/33819255.html Discuz二次开发手册(下载) http://dev.discuz.org/wiki/index.php ...

  8. win7休眠的开启与关闭方法

    从开始菜单中找到“附件→命令提示符”,右击选择“以管理员身份运行”,此时可能需要输入管理员密码或进行UAC确认,手工输入如下命令:powercfg -a,从这里可以清楚的看到,计算机是支持休眠的,只是 ...

  9. Solr6.6 Tomcat8部署

    原文:https://github.com/x113773/testall/issues/6 准备工作:[solr-6.6.0](http://www.apache.org/dyn/closer.lu ...

  10. 框架基础:ajax设计方案(五)--- 集成promise规范,更优雅的书写代码

    距离上一篇博客书写,又过去了大概几个月了,这段时间暂时离开了这个行业,让大脑休息一下.一个人旅行,一个人休息,正好也去完成一个目标 --- 拥有自己的驾照.当然,也把自己晒的黑漆马虎的.不过这一段时间 ...