leetcode - 33. Search in Rotated Sorted Array - Medium

descrition

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

解析

两种方法的时间复杂度和空间复杂度都是一样的,不过思考的思路有所不同,不过根本都是对二分查找的改进。方法 1 对应代码 int searchDirectly(vector& nums, int target); 方法 2 对应 int searchAssist(vector& nums, int target)。虽然 方法 2 对应的代码量要大一些,但思路还是值得借鉴的,这里也一并给出。

注意点:

  • 当 target 找不到的时候返回 -1
  • 可以假设数组中的元素都是唯一的 (这是代码优化的关键!)

一般的:

直接在原数组上进行二分查找。对于数组 arry[0,...,n-1] 可以将其分成两个部分 left_part = arry[0,...,imax], right_part=arry[imax+1, ..., n-1],其中 imax 指向数组中最大的元素,那么 left_part 和 right_part 都是递增的,并且 left_part 中所有的值都大于 right_part 中的值。

对于 binary search,假设 [ileft, ... , irigt] 确定 arry 中的一个子数组。下面就讨论,我们如何在每次查找中将查找空间减少一半的思路。

每次而分查找我们需要计算 imid = (ileft + iright) / 2,即中间元素的位置,将数组均分成两半。这时我们可以根据 imid 的位置来确定下一次的查找范围。

  • condition1: 如果 arry[ileft] < arry[imid] : 说明 imid 在 left_part 的 ascending 子数组中
  • condition2: 如果 arry[imid] < arry[irigh] : 说明 imid 在 rigt_part 的 ascending 子数组中

注意:因为 left_part < right_part ,因此以上两种情况是对立的。如果 ileft, imid, iright 指向的 3 个数相等,我们将无法判断 imid 处在数组的那个部分,也就无法达到划分的目的,这是题意的关键优化点。

方法 1

  • 如果 condition1 成立,那么 [ileft, ..., imid] 是递增有序的

    • 如果 target 在 [ileft, ..., imid] 区间内,则 ileft = imid-1
    • 否则 ileft = imid + 1
  • 如果 condition2 成立,那么 [imid, ..., iright] 是递增有序的
    • 如果 target 在 [imid, ..., iright] 区间内,则 ileft = imid + 1
    • 否则 iright = imid - 1

每一次查找都能使搜索空间减半。具体实现看代码,注意细节和边界条件。

方法 2

  1. 我们可以先找到数组中最小值的位置 imin,那么相对于原来递增有序的数,新的 rotated 数组中元素的位置 i' = (i + imin)%n。比如 4 5 6 7 0 1 2, imin = 4,相当于原数组 0 1 2 4 5 6 7 循环右移了 imin 步。找最小值的位置也是使用折半查找的思想,时间复杂度 O(log(n))。
  2. 针对原数组 0 1 2 4 5 6 7 使用而分查找,每次而分查找比较时,使用 i' = (i + imin)%n 计算真是的 middle 位置。这样可以达到减办的效果。时间复杂度 O(log(n)) 。

具体实现查看代码。虽然这样的方法比钱前一种方法来说代码量大,实际上做了两次而分查找,但这里新地址的映射方式是个很好的思考思路。

code


#include <iostream>
#include <vector>
#include <algorithm> using namespace std; class Solution{
public:
int search(vector<int>& nums, int target){
// You may assume no duplicate exists in the array.
//return searchDirectly(nums, target);
return searchAssist(nums, target);
} // time-O(log(n)), space-O(1)
int searchDirectly(vector<int>& nums, int target){
int ileft = 0;
int iright = nums.size()-1;
while(ileft <= iright){
int imid = (ileft+iright)/2;
if(nums[imid] == target){
return imid;
} // nums[imid] != target
if(nums[ileft] <= nums[imid]){
// nums[ileft,...,imid] is ascending
// Note: don't forget to check nums[ileft] == target
if(nums[ileft] <= target && target < nums[imid]){
iright = imid - 1;
}else{
ileft = imid + 1;
} }else{
// nums[imid] < nums[iright]
// nums[imid,...,iright] is ascending
// Note: don't forget to check target == nums[iright]
if(nums[imid] < target && target <= nums[iright]){
ileft = imid + 1;
}else{
iright = imid - 1;
}
} } return -1;
} // time-O(log(n)), space-O(1)
int searchAssist(vector<int>& nums, int target){
if(nums.empty())
return -1; // the number of rotated of each element in nums
int irotated = findMinInRotatedArray(nums);
int n = nums.size(); int ileft = 0;
int iright = nums.size() - 1;
while(ileft <= iright){
int imid = (ileft + iright) / 2;
int imidReal = (imid + irotated) % n; // calculate the real index of middle value
if(nums[imidReal] == target){
return imidReal;
}else if (nums[imidReal] < target){
ileft = imid + 1;
}else{
// nums[imidReal] > target
iright = imid - 1;
}
} return -1;
} int findMinInRotatedArray(vector<int>& nums){
if(nums.empty())
return -1;
if(nums[0] < nums[nums.size()-1]) // nums in ascending
return 0; // binary search
int ileft = 0;
int iright = nums.size() - 1;
while(ileft+1 < iright){
int imid = (ileft + iright) / 2;
if(nums[ileft] < nums[imid]){
ileft = imid;
}else{
// nums[imid] < nums[iright]
iright = imid;
}
} // ileft point to the maximum
// iright point to the minimum return iright;
}
}; int main()
{
return 0;
}

[array] leetcode - 33. Search in Rotated Sorted Array - Medium的更多相关文章

  1. LeetCode 33 Search in Rotated Sorted Array [binary search] <c++>

    LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前 ...

  2. [LeetCode] 33. Search in Rotated Sorted Array 在旋转有序数组中搜索

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  3. LeetCode 33. Search in Rotated Sorted Array(在旋转有序序列中搜索)

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  4. leetCode 33.Search in Rotated Sorted Array(排序旋转数组的查找) 解题思路和方法

    Search in Rotated Sorted Array Suppose a sorted array is rotated at some pivot unknown to you before ...

  5. LeetCode 33.Search in Rotated Sorted Array(M)

    题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...

  6. leetcode 33. Search in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  7. Java [leetcode 33]Search in Rotated Sorted Array

    题目描述: Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 ...

  8. [leetcode]33. Search in Rotated Sorted Array旋转过有序数组里找目标值

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  9. LeetCode 33 Search in Rotated Sorted Array(循环有序数组中进行查找操作)

    题目链接 :https://leetcode.com/problems/search-in-rotated-sorted-array/?tab=Description   Problem :当前的数组 ...

随机推荐

  1. Maven依赖分析

    背景 昨天帮一位同事排查了一个依赖冲突的问题.问题的现象就是在IntelliJ IDEA运行项目正常,但是打包(Maven assembly jar)之后传到服务器运行失败,报错:Caused by: ...

  2. 猪圈密码python脚本实现

    CTF比赛中,MISC题型中有时候会考到一种一种叫做"猪圈密码"(Pigpen_chiper)的简单加密方式.网上有个表可以对照地来实现解密,但是实际中太慢不符合竞速思维,于是写一 ...

  3. 最大信息系数(MIC)——Detecting Novel Associations in Large Data Sets

    本文介绍了一种发现两个随机变量之间依赖关系强度的度量MIC(最大信息系数,类似于相关系数的作用).MIC具有以下性质和优势: MIC度量具有普适性.其不仅可以发现变量间的线性函数关系,还能发现非线性函 ...

  4. 深入浅出多线程——ReentrantLock (一)

    ReentrantLock是一个排它重入锁,与synchronized关键字语意类似,但比其功能更为强大.该类位于java.util.concurrent.locks包下,是Lock接口的实现类.基本 ...

  5. 《java.util.concurrent 包源码阅读》21 CyclicBarrier和CountDownLatch

    CyclicBarrier是一个用于线程同步的辅助类,它允许一组线程等待彼此,直到所有线程都到达集合点,然后执行某个设定的任务. 现实中有个很好的例子来形容:几个人约定了某个地方集中,然后一起出发去旅 ...

  6. 微软云计算 Massive Data 处理语言Scope 1

    Massive Data处理一直是云计算中很重要的一个环节.目前像Google,Yahoo在相关方面都有自己专有的技术.例如Google的基于MapReduce的Sawzall语言.和Yahoo基于H ...

  7. redis—操作基础

    内存数据库: 1.双击redis-server.exe =>启动2.双击redis-cli.exe =>打开管理控制台3.查看所有key keys *4.查看key类型 type myKe ...

  8. FFmpeg之AVPacket

    花满楼原创 AVPacket,是压缩数据的结构体(解码前或编码后的结构体). 本文介绍FFmepg中常见结构AVPacekt,尽量用具体值来理解. 整个用于调试的代码可以这样写: #include & ...

  9. js 去掉数组中重复值,不重复的值保留

    这里介绍2中方式:js代码如下 var arr=[1,7,3,2,1,4,12,3,"3",3] function compare(arr) { var result = [], ...

  10. Common Data Service (CDS) 初探

    作者:陈希章 发表于 2017年12月16日 前言 Common Data Service(以下简称为CDS),通用数据服务是一个创新性的基础功能,这是微软试图打造一个全新的基于SaaS模式的数据服务 ...