尝试用Markdown写一篇博客

3142: [Hnoi2013]数列

Description

小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨。股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N。在疯涨的K天中小T观察到:除第一天外每天的股价都比前一天高,且高出的价格(即当天的股价与前一天的股价之差)不会超过M,M为正整数。并且这些参数满足M(K-1)<N。

小T忘记了这K天每天的具体股价了,他现在想知道这K天的股价有多少种可能。

Input

只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。

输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。

Output

仅包含一个数,表示这K天的股价的可能种数对于P的模值。

Sample Input

7 3 2 997

Sample Output

16

首先来讲讲我是怎么做(鬼)出这道题的。

没错就是打表。

对上次考试打完表没看出1,2,6,24是阶乘的事情耿耿于怀的我决定用打表做出这道一看就是打表题的题。

首先我花了20分钟碌碌无为,对于答案f(n,k,m)打了一个小表,什么都没有发现。

20分钟左右我开始固定k和m,移动n。

实验了几组k在2~4的数据后发现从n到n+1,答案会增长m^(k-1)。

试到30分钟,总结出:规律是在n=m(k-1)处开始的。

对!因为题目保证了n>m(k-1),所以这个规律可以放心大胆用。###

然后我打了关于k,m的f(m*(k-1),k,m)的表,即临界表。

大概长这个样子:

k\m     2     3     4     5
2 1 3 6 10
3 4 18 48 100
4 12 81 288 750
5 32 324 1536 5000

第一眼看过去没什么规律?

乱搞到40分钟,发现第k行的都能被(k-1)整除,除掉再看:

k\m     2     3     4     5
2 1 3 6 10
3 2 9 24 50
4 4 27 96 250
5 8 81 384 1250

发现每一列下来都是乘以m?所以只要看第一列。

m     2     3     4     5
1 3 6 10

相差是个等差数列,那就是个二次多项式了。

这时规律就比较明显了:(m-1)*m/2。

然后再整理一下就会得到答案:

Ans=(k-1)×(m-1)×m/2×m(k-2)+[n-m(k-1)]×m(k-1)####

50分钟不到开打,一个小时不到就做完了。

放在省选里面这个时间是可以接受的(NOIPT2也是1h左右吧?)。

这个时候我们不能满足是吧?要知道正解是什么。

第一步:将原数组差分,得到k-1个[1,m]内的正整数a[1…k-1]。

第二步:当前方案数即为n-sum(a[1] to a[k-1])。

所以总的方案数就是sum(n-sum(a[1] to a[k-1]))。

把n提出来,为n×m^(k-1)。

然后后面那个东西,网上的理解我推不出来,是要对于每个东西单独考虑?不会。

HNOI2013 BZOJ3142 数列的更多相关文章

  1. 【HNOI2013】数列

    题面 题解 设\(\{a_n\}\)为差分数组,可以得到柿子: \[ \begin{aligned} ans &= \sum_{a_1 = 1} ^ m \sum_{a_2 = 1} ^ m ...

  2. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  3. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

  4. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  5. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  6. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  7. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  8. BZOJ3142 [Hnoi2013]数列 【组合数学】

    题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...

  9. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

随机推荐

  1. 《java.util.concurrent 包源码阅读》17 信号量 Semaphore

    学过操作系统的朋友都知道信号量,在java.util.concurrent包中也有一个关于信号量的实现:Semaphore. 从代码实现的角度来说,信号量与锁很类似,可以看成是一个有限的共享锁,即只能 ...

  2. 关于mysql插入数据异常

    今天创建数据库时,在插入数据时出现了几个问题.(首次在LInux环境下创建数据库) 一个是关于SQL Error [1146] [42S02]: Table 'struts2exec.s_user' ...

  3. Ali OSS 服务端签名并设置回调,客户端上传文件

    一.最近做阿里云oss文件上传开发,一点收获分享给大家,帮助大家绕过一些坑.关于阿里云oss服务的介绍,我这里不做赘述了,可以查看阿里云OSS开发api文档. 在这里我主要介绍下,文件上传流程比较复杂 ...

  4. C#设计模式之十八中介者模式(Mediator Pattern)【行为型】

    一.引言 今天我们开始讲“行为型”设计模式的第五个模式,该模式是[中介者模式],英文名称是:Mediator Pattern.还是老套路,先从名字上来看看.“中介者模式”我第一次看到这个名称,我的理解 ...

  5. ChatterBot之linux下安装mongodb 02

    当前环境 :centos 6.9 mongodb版本 mongodb-linux-x86_64-3.4.4.tgz 使用链接工具:studio-3t-x64.msi.zip 首先我们先来安装mongo ...

  6. P1156 垃圾陷阱

    题目描述 卡门――农夫约翰极其珍视的一条Holsteins奶牛――已经落了到“垃圾井”中.“垃圾井”是农夫们扔垃圾的地方,它的深度为D(2<=D<=100)英尺. 卡门想把垃圾堆起来,等到 ...

  7. 最全最详细:ubuntu16.04下内核编译以及设备驱动程序的编写(针对新手而写)

    写在前面:本博客为本人原创,转载请注明出处!同时,本博客严禁任何下载站随意抓取!!! 本博客唯一合法URL: 总体考虑 要去写设备驱动程序,说白了就三大步骤:下载内核源码构建内核源码树(也就是下载你的 ...

  8. UWP 用Thumb 控件仿制一个可拖动悬浮 Button

    参考了 http://www.cnblogs.com/zhanggaoxing/p/6403430.html,并加以改进. 最终效果::: Thumb 的原生事件 DragStarted,DragDe ...

  9. 76、django之内置Admin

    本篇导航: 配置路由 定制Admin Django内置的Admin是对于model中对应的数据表进行增删改查提供的组件,使用方式有: 依赖APP: django.contrib.auth django ...

  10. oracle和mysql几点差异对比

    Oracle与mysql差异性总结 之前有个项目是用oracle数据库进行开发,需要把数据库改成mysql,遇到了一些地方需要注意的,就简单记了下来. 备注: 再把oracle转成mysql的时候,表 ...