题目描述 Description

有 N ( <=20 ) 台 PC 放在机房内,现在要求由你选定一台 PC,用共 N-1 条网线从这台机器开始一台接一台地依次连接他们,最后接到哪个以及连接的顺序也是由你选定的,为了节省材料,网线都拉直。求最少需要一次性购买多长的网 线。(说白了,就是找出 N 的一个排列 P1 P2 P3 ..PN 然后 P1 -> P2 -> P3 -> ... -> PN 找出 |P1P2|+|P2P3|+...+|PN-1PN| 长度的最小值)

输入描述 Input Description

第一行 N ,下面 N 行,每行分别为机器的坐标(x,y) ( 实数 -100<=x,y<=100 )

输出描述
Output Description

最小的长度,保留两位小数。

样例输入
Sample Input

3
0 0
1 1
1 -1

样例输出
Sample Output

2.83

正解:爬山算法。

首先这题很容易可以得到一个$O(2^{n}n^{2})$的状压$DP$的算法。然后就不会做了。。

然后这题可以写爬山算法。。我们打乱$[1,n]$的序列,然后$O(n^{2})$枚举每个$i$和$j$。

如果$dis(i-1,i)+dis(j,j+1)>dis(i-1,j)+dis(i,j+1)$,那么将$[i,j]$直接翻转一下,可以发现,这样做肯定会得到更优解。然后$rand$3000次,每次$O(n^{2})$算出最优解后取个$min$就行了。

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <ctime>
#define inf (1e18)
#define eps (1e-9)
#define all (1<<n)
#define N (1<<20)
#define il inline
#define RG register
#define ll long long
#define lb(x) (x & -x)
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; double f[][N],dd[][],x[],y[],ans=inf;
int dex[],n; il int gi(){
RG int x=,q=; RG char ch=getchar(); while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar(); while (ch>='' && ch<='') x=x*+ch-,ch=getchar(); return q*x;
} il double dis(RG int i,RG int j){ return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])); } /*
il void work(){
cin>>n; for (RG int i=1;i<=n;++i) scanf("%lf%lf",&x[i],&y[i]);
for (RG int s=1;s<all;++s){
for (RG int i=1;i<=n;++i){
if (!(s&(1<<(i-1)))) continue;
for (RG int j=1;j<=n;++j){
if (s&(1<<(j-1))) continue;
RG int k=s|(1<<(j-1));
if (f[j][k]<eps) f[j][k]=inf;
f[j][k]=min(f[j][k],f[i][s]+dis(i,j));
}
}
}
for (RG int i=1;i<=n;++i) if (f[i][all-1]>eps) ans=min(ans,f[i][all-1]);
printf("%0.2lf",ans); return;
}
*/ il void sv(RG int a,RG int b){
for (RG int i=a,j=b;i<=j;++i,--j) swap(dex[i],dex[j]);
return;
} il double solve(){
for (RG int i=;i<=;++i){
RG int a=rand()%n+;
RG int b=rand()%n+;
swap(dex[a],dex[b]);
}
for (RG int i=;i<n;++i)
for (RG int j=i+;j<=n;++j)
if (dd[dex[i-]][dex[i]]+dd[dex[j]][dex[j+]]>dd[dex[i-]][dex[j]]+dd[dex[i]][dex[j+]]) sv(i,j);
RG double res=; for (RG int i=;i<n;++i) res+=dd[dex[i]][dex[i+]]; return res;
} il void work(){
cin>>n; for (RG int i=;i<=n;++i) scanf("%lf%lf",&x[i],&y[i]),dex[i]=i;
for (RG int i=;i<=n;++i)
for (RG int j=;j<=n;++j)
if (i!=j) dd[i][j]=dis(i,j);
for (RG int i=;i<=;++i){
RG double res=solve();
if (ans>res) ans=res;
}
printf("%0.2lf",ans); return;
} int main(){
File("linec");
srand(time(NULL));
work();
return ;
}

CodeVS1344 线型网络的更多相关文章

  1. NS3网络仿真(6): 总线型网络

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载.但请保留作者信息 在NS3提供的第一个演示样例first.py中,模拟了一个点对点的网络,接下来的一个演示样例代码模 ...

  2. Cogs 6. 线型网络

    6. 线型网络 ★★☆   输入文件:linec.in   输出文件:linec.out   简单对比时间限制:1 s   内存限制:256 MB [问题描述] 有 N(N<=20)台 PC 放 ...

  3. CodeVS 1344 线型网络

    Sol 随机化算法+哈密顿路径. 好厉害的题...首先都会想到状压DP对吧,复杂度 \(O(n^2 2^n)\) . \(n=20\)  exm?? \(10^8\) 有一种算法就是随机化算法 再调整 ...

  4. cogs 线型网络(状压dp)

    /* 需要好大的空间..... 而且lowbit理解的不是很好 先放到博客里 以后慢慢研究 */ #include<iostream> #include<cstdio> #in ...

  5. [Cogs] 线型网络

    题面 http://cogs.pro:8080/cogs/problem/problem.php?pid=6 题解 https://www.zybuluo.com/wsndy-xx/note/1135 ...

  6. 前端学HTTP之网络基础

    × 目录 [1]网络 [2]OSI [3]TCP/IP 前面的话 HTTP协议对于前端工程师是非常重要的.我们在浏览网站时,访问的每一个WEB页面都需要使用HTTP协议实现.如果不了解HTTP协议,就 ...

  7. Java基础之网络编程

    网络编程:1.网络编程概述 (1)网络模型 OSI参考模型 TCP/IP参考模型 (2)网络通讯要素 IP地址 端口号 传输协议 (3)网络通讯前提: **找到对方IP **数据要发送到指定端口.为了 ...

  8. HCNA之网络通信基础

    一.通信与网络 通信的概念我们并不陌生,在人类社会的起源和发展过程中,通信就直伴随着我们.般认为, 20世纪七.八十年代,人类社会已进入到信息时代,对于生活在信息时代的我们,通信的必要性和重要性更是不 ...

  9. NS3网络仿真(7): Wifi节点

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在上一节中.我们仿真了一个总线型网络,这一节尝试将上一节中的n0变成一个无线的AP.再连上几个节点 ...

随机推荐

  1. 476. Number Complement

    题目 Given a positive integer, output its complement number. The complement strategy is to flip the bi ...

  2. Socket协议

    Socket协议的形象描述 socket的英文原义是"孔"或"插座".在这里作为4BDS UNIX的进程通信机制,取后一种意思.socket非常类似于电话插座. ...

  3. Mybatis的@Options注解

    mybatis的@Options注解能够设置缓存时间,能够为对象生成自增的key 第一个使用场景: 有一个表 CREATE TABLE instance ( instance_id BIGINT UN ...

  4. iOS网络编程笔记——编写自己的网络客户端

    编写网络客户端主要有四个步骤: (1)项目中引入Accounts和Social框架 Accounts框架中有进行用户账户认证所需类,Social框架提供了我们所需要的SLRequest类. (2)用户 ...

  5. SQL SERVER 报:由于数据移动,未能继续以 NOLOCK 方式扫描错误的解决办法。

    比如在某个表中使用 select xxx from xxx with(nolock) where xxxx 查询. 提示出错:由于数据移动,未能继续以 NOLOCK 方式扫描. 它有可能某些条件出错, ...

  6. ubuntu如何进入local、bin目录

    回到home目录,输入命令:cd /usr/local 若要进入bin目录,输入命令:cd /usr/local/bin

  7. java学习(一)静态代码块 构造代码块 构造方法的执行顺序及注意问题

    今天我总结了一下java中静态代码块 构造代码块 构造方法的执行顺序及其注意问题 首先要知道静态代码块是随着类的加载而加载,而构造代码块和构造方法都是随着对象的创建而加载 当时做了这么一个小案例(想必 ...

  8. 【转】并行类加载——让tomcat玩转双十一 @双十一实战

    原文:https://yq.aliyun.com/articles/4227?spm=5176.100239.yqblog1.20.cfRztB 摘要: 今年双十一,是应用容器的最新版本Ali-tom ...

  9. Node.js开发工具、开发包、框架等总结

    开发工具 1.WebStorm,毫无疑问非他莫属,跨平台,强大的代码提示,支持Nodejs调试,此外还支持vi编辑模式,这点我很喜欢.2.做些小型项目用Sublime Text.3.Browserif ...

  10. httpclient源码分析之MainClientExec

    MainClientExec是HTTP请求处理链中最后一个请求执行环节,负责与另一终端的请求/响应交互,也是很重要的类. 源码版本是4.5.2,主要看execute方法,并在里面添加注释.接着详细说下 ...