Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18623   Accepted: 4057

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:

f个草坪,每个草坪初始有a[i]头牛,最多可以容纳b[i]头牛,无向图,问最少需要多少时间可以使得每头牛都有归宿...

分析:

最大流的基础题目...但是我貌似脑残了...TAT...

先Floyd处理出每两个点之间的最短路,二分答案,然后建图...

我们第一想法一定是拆点,把每个点拆成一个出点一个入点,S向入点连一条容量为a[i]的边,出点向T连一条容量为b[i]的边,如果两个点之间最短路小于枚举的ans就连边...

但是这肯定是错误的...(随便一个数据就可以卡...)

正确的建图方法是S向出点连边,入点向T连边,出点向入点连边...这样一头牛从A转移到B之后就不可能再转移到其他点了...

zz的我把lr定义成了long long但是忘记改mid...TAT...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,a[maxn],b[maxn],hd[maxn*],fl[maxm],to[maxm],nxt[maxm],pos[maxn*];
long long dis[maxn][maxn],Max; inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn*];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(fl[i],f-res)),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline int check(long long mid){
cnt=;memset(hd,-,sizeof(hd));
for(int i=;i<=n;i++)
add(a[i],S,i+n),add(b[i],i,T),add(inf,i+n,i);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][j]<=mid)
add(inf,i+n,j);
return dinic();
} signed main(void){
// freopen("in.txt","r",stdin);
Max=,sum=cnt=;
scanf("%d%d",&n,&m);
S=,T=n*+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=INF;
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),sum+=a[i];
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),dis[x][y]=dis[y][x]=min(dis[x][y],(long long)s);
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
long long l=,r=INF-,ans=-;
while(l<=r){
long long mid=(l+r)>>;
if(check(mid)==sum)
ans=mid,r=mid-;
else
l=mid+;
}
printf("%lld\n",ans);
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

POJ 2391 Ombrophobic Bovines的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  3. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  4. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  5. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  6. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  9. POJ 2391 Ombrophobic Bovines【二分 网络流】

    题目大意:F个草场,P条道路(无向),每个草场初始有几头牛,还有庇护所,庇护所有个容量,每条道路走完都有时间,问所有奶牛都到庇护所最大时间最小是多少? 思路:和POJ2112一样的思路,二分以后构建网 ...

随机推荐

  1. angular2系列教程(三)components

    今天,我们要讲的是angualr2的components. 例子

  2. HBase框架学习之路

    1 背景知识 1.1 解决问题 解决HDFS不支持单条记录的快速查找和更新的问题. 1.2 适用情况 存在亿万条记录的数据库,只有千万或者百万条记录使用RDBMS更加合适 确保你的应用不需要使用RDB ...

  3. java多线程--同步屏障CyclicBarrier的使用

    CyclicBarrier的概念理解: CyclicBarrier的字面上的意思是可循环的屏障,是java并发包java.util.concurrent 里的一个同步工具类,在我下载的JDK1.6的中 ...

  4. 百度EChart3初体验

    由于项目需要在首页搞一个订单数量的走势图,经过多方查找,体验,感觉ECharts不错,封装的很细,我们只需要看自己需要那种类型的图表,搞定好自己的json数据就OK.至于说如何体现出来,官网的教程很详 ...

  5. C#[Win32&WinCE&WM]应用程序只能运行一个实例:MutexHelper

    前言 在开发应用程序时,通常只让程序运行一个实例.所以,就要判断程序是否已经运行. 下面是我自己在项目中使用到,封装好的帮助类.有 普通的 C# 应用程序 和 Windows CE 和 Windows ...

  6. C语言中的结构体

    用户自己建立自己的结构体类型 1.  定义和使用结构体变量 (1).结构体的定义 C语言允许用户自己建立由不同类型数据组成的组合型的数据结构,它称为结构体. (2).声明一个结构体类型的一般形式为: ...

  7. ASP.NET MVC——CodeFirst开发模式

    Entity Framework框架提供了几种开发模式,比如Database First,Model First,Code First.Database First是最老也是应用得最广泛的一种设计方式 ...

  8. 遭遇Web print

    一直都知道Web打印还不太成熟,以前IE横行时,普遍都是采用打印相关的ActiveX控件,有些国产厂家做得不错,只是那时还没有付费能力,没有太多关注.而纯粹基于Web标准的打印,浏览器对CSS pri ...

  9. centos下升级mysql后遇到的小问题

    记录今天遇到的一个小问题, 写一个app访问接口涉及到通过存储过程反馈多个结果集,但是反回多个结果集的存储过程,调用之后只能反回一个了,而且奇怪的是,即使直接在mysql上同时执行两条查询语句,第一条 ...

  10. C++_系列自学课程_第_12_课_结构体

    #include <iostream> #include <string> using namespace std; struct CDAccount { double bal ...