Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18623   Accepted: 4057

Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

题意:

f个草坪,每个草坪初始有a[i]头牛,最多可以容纳b[i]头牛,无向图,问最少需要多少时间可以使得每头牛都有归宿...

分析:

最大流的基础题目...但是我貌似脑残了...TAT...

先Floyd处理出每两个点之间的最短路,二分答案,然后建图...

我们第一想法一定是拆点,把每个点拆成一个出点一个入点,S向入点连一条容量为a[i]的边,出点向T连一条容量为b[i]的边,如果两个点之间最短路小于枚举的ans就连边...

但是这肯定是错误的...(随便一个数据就可以卡...)

正确的建图方法是S向出点连边,入点向T连边,出点向入点连边...这样一头牛从A转移到B之后就不可能再转移到其他点了...

zz的我把lr定义成了long long但是忘记改mid...TAT...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,a[maxn],b[maxn],hd[maxn*],fl[maxm],to[maxm],nxt[maxm],pos[maxn*];
long long dis[maxn][maxn],Max; inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn*];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(fl[i],f-res)),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline int check(long long mid){
cnt=;memset(hd,-,sizeof(hd));
for(int i=;i<=n;i++)
add(a[i],S,i+n),add(b[i],i,T),add(inf,i+n,i);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(dis[i][j]<=mid)
add(inf,i+n,j);
return dinic();
} signed main(void){
// freopen("in.txt","r",stdin);
Max=,sum=cnt=;
scanf("%d%d",&n,&m);
S=,T=n*+;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=INF;
for(int i=;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),sum+=a[i];
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),dis[x][y]=dis[y][x]=min(dis[x][y],(long long)s);
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
long long l=,r=INF-,ans=-;
while(l<=r){
long long mid=(l+r)>>;
if(check(mid)==sum)
ans=mid,r=mid-;
else
l=mid+;
}
printf("%lld\n",ans);
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

POJ 2391 Ombrophobic Bovines的更多相关文章

  1. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  2. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  3. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  4. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  5. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  6. POJ 2391.Ombrophobic Bovines (最大流)

    实际上是求最短的避雨时间. 首先将每个点拆成两个,一个连接源点,一个连接汇点,连接源点的点的容量为当前单的奶牛数,连接汇点的点为能容纳的奶牛数. floyd求任意两点互相到达的最短时间,二分最长时间, ...

  7. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

  8. poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点

    题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...

  9. POJ 2391 Ombrophobic Bovines【二分 网络流】

    题目大意:F个草场,P条道路(无向),每个草场初始有几头牛,还有庇护所,庇护所有个容量,每条道路走完都有时间,问所有奶牛都到庇护所最大时间最小是多少? 思路:和POJ2112一样的思路,二分以后构建网 ...

随机推荐

  1. ASP.NET Web API 配置 JSONP

    之前的一篇博文:jsonp跨域+ashx(示例) 1. 安装 Jsonp 程序集: PM> Install-Package WebApiContrib.Formatting.Jsonp PM&g ...

  2. 《HelloGitHub月刊》第09期

    <HelloGitHub>第09期 兴趣是最好的老师,<HelloGitHub>就是帮你找到兴趣! 前言 转眼就到年底了,月刊做到了第09期,感谢大家一路的支持和帮助

  3. 微信企业号开发(1)WebAPI在回调模式中的URL验证

    微信回调模式的官方文档. 开发语言:C#(微信相关功能代码可以从官网下载) 首先,必须要明确几个参数,这几个参数在微信企业号中,每次调用都会使用到. 1.msg_signature:签名(已加密,加密 ...

  4. 【干货分享】前端面试知识点锦集04(Others篇)——附答案

    四.Others部分 技术类 1.http状态码有哪些?分别代表是什么意思? (1).成功2×× 成功处理了请求的状态码.200 服务器已成功处理了请求并提供了请求的网页.204 服务器成功处理了请求 ...

  5. 《Web开发中块级元素与行内元素的区分》

    一.块级元素的特性: 占据一整行,总是重起一行并且后面的元素也必须另起一行显示. HTML中块级元素列举如下: address(联系方式信息) article(文章内容) aside(伴随内容) au ...

  6. jQuery fsBanner 手风琴

    fsbanner是一款自定义功能丰富的响应式网站Banner手风琴特效jQuery插件.该手风琴特效兼容性很好,支持点击和鼠标滑过等触发事件,并且可添加标题或描述. 在线实例 默认 带标题 鼠标滑过 ...

  7. Dynamics CRM 2015-Sign Out选项

    If you are using CRM Online - there is a sign out button in the upper right corner (in the web versi ...

  8. 用drawRect的方式实现一个尺子

    用drawRect的方式实现了一个尺子选择器,demo在这里:https://github.com/Phelthas/LXMRulerView 效果如图:   如果不考虑复用的问题,我感觉最简单的实现 ...

  9. 我的第一篇博客----LCS学习笔记

    LCS引论 在这篇博文中,博主要给大家讲一个算法----最长公共子序列(LCS)算法.我最初接触这个算法是在高中学信息学竞赛的时候.那时候花了好长时间理解这个算法.老师经常说,这种算法是母算法,即从这 ...

  10. Highcharts配置

    一.基础使用 <script src="http://cdn.hcharts.cn/jquery/jquery-1.8.3.min.js"></script> ...