一、kNN算法

1、kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别。

2,距离可以是欧式距离,夹角余弦距离等等。

3,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标。

4,欧式距离公式:

二、关于kNN实现手写数字识别

1,手写数字训练集测试集的数据格式,本篇文章说明的是《机器学习实战》书提供的文件,将所有数字已经转化成32*32灰度矩阵。

三、代码结构构成

1,data_Prepare.py :在这个文件放数据处理的函数,最终返回合适格式的数据集

2,kNN_Algorithm.py :在这个文件中存放kNN分类算法的核心函数,即执行决策的分类函数

3,testknn_Test.py :这个文件用于测试一波数据,计算函数的错误率

四、代码如下

1,data_Prepare.py

 import numpy as np
def img2_vector(filename):
return_vect = np.zeros((1,1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
return_vect[0,32*i+j] = int(linestr[j])
return return_vect

解释:可以看出返回一个1行1024列的向量,这是把一个图像的32*32展开表示成一行,为后面计算欧式距离做准备。

2,kNN_Algorithm.py

 #导入kNN算法所需的两个模块,(1)numpy科学计算包(2)operator运算符模块
import numpy as np
import operator #定义k近邻算法函数classify0,[参数说明:inX待预测的对象,dataset训练数据,labels训练数据对应的标签,选取的前k相近]
def classidy0(inX,dataset,labels,k): #1,计算距离
dataset_size = dataset.shape[0]
diff_mat = np.tile(inX,(dataset_size,1))-dataset
sqdiff_mat = diff_mat**2
sq_distances = sqdiff_mat.sum(axis=1)
distances = sq_distances**0.5 #2,按递增排序
sorted_distances_index = distances.argsort() #3,选择距离最近的前k个点,并且计算它们类别的次数排序
class_count = {}
for i in range(k):
vote_label = labels[sorted_distances_index[i]]
class_count[vote_label] = class_count.get(vote_label,0) + 1
sorted_class_count = sorted(class_count.items(),key=operator.itemgetter(1),reverse=True) #4,返回前k个里面统计的最高次类别作为预测类别
return sorted_class_count[0][0]

解释:此函数是分类函数,四个参数,定义k近邻算法函数classify0,[参数说明:inX待预测的对象,dataset训练数据,labels训练数据对应的标签,选取的前k相近]。最后会返回分类的类别。

3,testknn_Test.py

 from os import listdir   #列出给定目录的文件名#
import kNN_Algorithm
import numpy as np
import data_Prepare
def class_test(): #获取训练集目录下的所有文件#
labels = []
train_file_list = listdir('trainingDigits')
m_train = len(train_file_list)
train_mat = np.zeros((m_train,1024))
for i in range(m_train):
file_str = train_file_list[i]
#filename1 = 'trainingDigits/'+file_str#
file_name = file_str.split('.')[0]
class_num = file_name.split('_')[0]
labels.append(class_num) #训练集所有文件对应的分类label#
train_mat[i,:]=data_Prepare.img2_vector('trainingDigits/%s' %file_str) #每个训练集特征# test_file_list = listdir('testDigits')
error_count = 0.0
m_test = len(test_file_list) for i in range(m_test):
file_str = test_file_list[i]
#filename2 = 'testDigits/'+file_str
file_name = file_str.split('.')[0]
class_num = file_name.split('_')[0]
vector_under_test = data_Prepare.img2_vector('testDigits/%s' %file_str)
classifier_result = kNN_Algorithm.classidy0(vector_under_test,train_mat,labels,3) #进行一次测试#
print("the classifier came back with:%d, the real answer is : %d" %(int(classifier_result),int(class_num)))
if (classifier_result!=class_num):error_count+=1 print('\n the total number of errors is : %d' %error_count)
print('\n the total error rate is : %f'%(error_count/float(m_test)))

解释:可以看出这个代码是一个测试函数,写的略显复杂,真实的意思就是循环调用第二个函数,计算错误率。

五、其余说明

限制:本代码手写数字识别,图片格式有局限性,所以若自己做相关项目,应该处理图片数据。

建议:建议仅参考第二个文件,即分类文件,这是整个算法的核心。然后可以用自己的方法用自己的数据,对算法稍作更改即可使用。

机器学习(二)-kNN手写数字识别的更多相关文章

  1. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  2. 机器学习初探(手写数字识别)matlab读取数据集

    手写数字识别是机器学习里面的一个经典问题,今天就这一段时间学习的机器学习,花一个下午茶的时间,试试机器学习. 首先数据库是在MNIST(http://yann.lecun.com/exdb/mnist ...

  3. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  4. 机器学习初探(手写数字识别)HOG图片

    这里我们讲一下使用HOG的方法进行手写数字识别: 首先把 代码分享出来: hog1.m function B = hog1(A) %A是28*28的 B=[]; [x,y] = size(A); %外 ...

  5. 10,knn手写数字识别

    # 导包 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClas ...

  6. KNN手写数字识别

    import numpy as np import matplotlib .pyplot as plt from sklearn.neighbors import KNeighborsClassifi ...

  7. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  8. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  9. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

随机推荐

  1. GPUImage库的使用

    GPUImage开源项目地址:https://github.com/BradLarson/GPUImage GPUImage使用说明:https://github.com/BradLarson/GPU ...

  2. JAVAEE企业级应用开发浅谈第二辑:MVC和三层架构

    上海尚学堂警句:一份信心,一份努力,一份成功:十分信心,十分努力,十分成功. Step1.情景概要 Hello,小伙伴们,昨天跟大家分享了JAVA EE 企业级应用开发中大家耳熟能详的概念-三层架构, ...

  3. 用Python来实现列举某个文件夹内所有的文件列表

    用Python来实现列举某个文件夹内所有的文件列表.吾八哥我动手写代码之前分析了下,遍历一个文件夹,肯定是需要用到os模块了,查阅模块帮助信息,可知os.listdir()方法可以列举某个文件夹内的所 ...

  4. 反射型 DDoS 攻击的原理和防范措施

    随着僵尸网络的兴起,同时由于攻击方法简单.影响较大.难以追查等特点,分布式拒绝服务攻击(DDoS,Distributed Denial of Service)得到快速壮大和日益泛滥. 成千上万主机组成 ...

  5. win10 uwp 通知列表

    经常看到小伙伴问,问已经绑定列表,在进行修改时,不会通知界面添加或删除.这时问题就在,一般使用的列表不会在添加时通知界面,因为他们没有通知. 本文:知道什么是通知的列表,如何去写一个通知列表 在 C# ...

  6. 使用 Skeleton Screen 提升用户感知体验

    1024程序猿节"愿世界和平,没有bug",腾讯云社区向改变世界的程序猿致敬! 作者:陈纬杰 一直以来,无论是web还是iOS.android的应用中,为了提升应用的加载等待这段时 ...

  7. USACO奶牛博览会(DP)

    Description 奶牛想证明他们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或情商会造成 ...

  8. (转)java内存泄漏的定位与分析

    转自:http://blog.csdn.net/x_i_y_u_e/article/details/51137492 1.为什么会发生内存泄漏 java 如何检测内在泄漏呢?我们需要一些工具进行检测, ...

  9. LINUX 笔记-top命令

    top命令经常用来监控linux的系统状况,比如cpu.内存的使用. top - :: up day, :, users, load average: 0.00, 0.01, 0.00 Tasks: ...

  10. Tomcat 笔记-目录简介

    bin:启动和关闭tomcat的bat文件 conf:配置文件 server.xml该文件用于配置server相关的信息,比如tomcat启动的端口号,配置主机(Host) web.xml文件配置与w ...