《java.util.concurrent 包源码阅读》16 一种特别的BlockingQueue:SynchronousQueue
SynchronousQueue是一种很特别的BlockingQueue,任何一个添加元素的操作都必须等到另外一个线程拿走元素才会结束。也就是SynchronousQueue本身不会存储任何元素,相当于生产者和消费者手递手直接交易。
SynchronousQueue有一个fair选项,如果fair为true,称为fair模式,否则就是unfair模式。
在fair模式下,所有等待的生产者线程或者消费者线程会按照开始等待时间依次排队,然后按照等待先后顺序进行匹配交易。这种情况用队列实现。
在unfair模式下,则刚好相反,后来先匹配,这种情况用栈实现。
*/
public SynchronousQueue(boolean fair) {
transferer = fair ? new TransferQueue() : new TransferStack();
}
因为添加元素和拿走元素是类似手递手交易的,所以对于拿走元素和添加元素操作,SynchronousQueue调用的是Transferer同一个方法transfer。
当object为null时表示是拿走元素,用于消费者线程,否则则是添加元素,用于生产者线程。因此transfer方法是分析的重点。
abstract Object transfer(Object e, boolean timed, long nanos);
首先来看用于fair模式的TransferQueue的transfer方法:
看代码之前,来理一下逻辑:
1. 开始队列肯定是空。
2. 线程进入队列,如果队列是空的,那么就添加该线程进入队列,然后进行等待(要么有匹配线程出现,要么就是该请求超时取消)
3. 第二个线程进入,如果前面一个线程跟它属于不同类型,也就是说两者是可以匹配的,那么就从队列删除第一个线程。
如果是相同的线程,那么做法参照2。
理清了基本逻辑,也就是会有两种情况:
1. 队列为空或者队列中的等待线程是相同类型
2. 队列中的等待线程是匹配的类型
Object transfer(Object e, boolean timed, long nanos) { QNode s = null;
// e不是null表示是生成者线程,e就是产品,反之就是消费者线程
boolean isData = (e != null); for (;;) {
QNode t = tail;
QNode h = head;
// tail和head在队列创建时会被初始化成一个虚拟节点
// 因此发现没有初始化,重新循环等待直到初始化完成
if (t == null || h == null)
continue; // 队列为空或等待线程类型相同(不同类型才能匹配)
// 这两种情况都要把当前线程加入到等待队列中
if (h == t || t.isData == isData) {
QNode tn = t.next;
// tail对象已经被更新,出现不一致读的现象,重新循环
if (t != tail)
continue;
// 添加线程到等待队列时会先更新当前tail的next,然后
// 更新tail本身,因此出现只有next被更新的情况,应该
// 更新tail,然后重新循环
if (tn != null) {
advanceTail(t, tn);
continue;
}
// 设定了超时,剩余等待时间耗尽的时候,就无需再等待
if (timed && nanos <= 0)
return null;
// 首次使用s的时候,新建一个节点保存当前线程和数据来初始化s
if (s == null)
s = new QNode(e, isData);
// 尝试更新tail的next,把新建节点添加到tail的后面,如果失败了,就重新循环
if (!t.casNext(null, s))
continue;
// 把新建的节点设置为tail
advanceTail(t, s);
// 等待匹配线程,成功匹配则返回的匹配的值
// 否则返回当前节点,因此s和x相同表示请求被取消
Object x = awaitFulfill(s, e, timed, nanos);
if (x == s) {
clean(t, s);
return null;
} // 这个时候已经匹配成功了,s应该是排在第一个的等待线程
// 如果s依然在队列中,那么需要更新head。
// 更新head的方法是把s这个排在第一位的节点作为新的head
// 因此需要重置一些属性使它变成虚拟节点
if (!s.isOffList()) {
advanceHead(t, s);
if (x != null)
s.item = s;
s.waiter = null;
}
// x不为null表示拿到匹配线程的数据(消费者拿到生产者的数据),
// 因此返回该数据,否则返回本身的数据(生成者返回自己的数据)
return (x != null) ? x : e; } else { // 线程可以匹配
// 因为是队列,因此匹配的是第一个节点
QNode m = h.next;
// 同样需要检查不一致读的情况
if (t != tail || m == null || h != head)
continue; Object x = m.item;
// 匹配失败时,把m从队列中移走,重新循环
if (isData == (x != null) || // m已经被匹配了
x == m || // m已经被取消了
!m.casItem(x, e)) { // 用CAS设置m的数据为null
advanceHead(h, m);
continue;
} // 匹配成功,更新head
advanceHead(h, m);
// 解除m的线程等待状态
LockSupport.unpark(m.waiter);
// 返回匹配的数据
return (x != null) ? x : e;
}
}
}
接着来用于Unfair模式的TransferStack的transfer方法
大体逻辑应该是一样的,不同就是队列的入队和出队操作对应到栈时就是入栈和出栈的操作。
Object transfer(Object e, boolean timed, long nanos) {
SNode s = null;
int mode = (e == null) ? REQUEST : DATA; for (;;) {
SNode h = head;
// 栈为空或者节点类型相同的情况
if (h == null || h.mode == mode) {
if (timed && nanos <= 0) {
// 检查栈顶节点是否已经取消,如果已经取消,弹出节点
// 重新循环,接着检查新的栈顶节点
if (h != null && h.isCancelled())
casHead(h, h.next);
else
return null;
// 新建节点,并且尝试把新节点入栈
} else if (casHead(h, s = snode(s, e, h, mode))) {
// 等待匹配,如果发现是被取消的情况,则释放节点,返回null
SNode m = awaitFulfill(s, timed, nanos);
if (m == s) {
clean(s);
return null;
}
// 如果匹配的成功两个节点是栈顶的两个节点
// 把这两个节点都弹出
if ((h = head) != null && h.next == s)
casHead(h, s.next); // help s's fulfiller
return (mode == REQUEST) ? m.item : s.item;
}
} else if (!isFulfilling(h.mode)) { // 栈顶节点没有和其他线程在匹配,可以匹配
if (h.isCancelled()) // 栈顶节点的请求已经被取消
casHead(h, h.next); // 移除栈顶元素重新循环
// 尝试把该节点也入栈,该节点设置为正在匹配的状态
// 也就是isFulfilling返回true
else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
for (;;) {
// 栈顶节点(当前线程的节点)和它的下一个节点进行匹配,m为null意味着
// 栈里没有其他节点了,因为前面该节点入栈了,需要弹出这个节点重新循环
SNode m = s.next;
if (m == null) {
casHead(s, null);
s = null;
break;
} // 这个时候是有节点可以匹配的,尝试为这两个节点做匹配
SNode mn = m.next;
// m和s匹配成功,弹出这两个节点,返回数据;匹配失败,把m移除
if (m.tryMatch(s)) {
casHead(s, mn);
return (mode == REQUEST) ? m.item : s.item;
} else
s.casNext(m, mn);
}
}
// 栈顶正在匹配,参见代码:
// else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
// 做法基本类似,只是这里帮助其他线程匹配,无论成功与否
// 都要重新循环
} else {
SNode m = h.next;
if (m == null)
casHead(h, null);
else {
SNode mn = m.next;
if (m.tryMatch(h))
casHead(h, mn);
else
h.casNext(m, mn);
}
}
}
}
TransferQueue和TransferStack的算法实现可以参考 这里
《java.util.concurrent 包源码阅读》16 一种特别的BlockingQueue:SynchronousQueue的更多相关文章
- 《java.util.concurrent 包源码阅读》 结束语
<java.util.concurrent 包源码阅读>系列文章已经全部写完了.开始的几篇文章是根据自己的读书笔记整理出来的(当时只阅读了部分的源代码),后面的大部分都是一边读源代码,一边 ...
- 《java.util.concurrent 包源码阅读》13 线程池系列之ThreadPoolExecutor 第三部分
这一部分来说说线程池如何进行状态控制,即线程池的开启和关闭. 先来说说线程池的开启,这部分来看ThreadPoolExecutor构造方法: public ThreadPoolExecutor(int ...
- 《java.util.concurrent 包源码阅读》02 关于java.util.concurrent.atomic包
Aomic数据类型有四种类型:AomicBoolean, AomicInteger, AomicLong, 和AomicReferrence(针对Object的)以及它们的数组类型, 还有一个特殊的A ...
- 《java.util.concurrent 包源码阅读》04 ConcurrentMap
Java集合框架中的Map类型的数据结构是非线程安全,在多线程环境中使用时需要手动进行线程同步.因此在java.util.concurrent包中提供了一个线程安全版本的Map类型数据结构:Concu ...
- 《java.util.concurrent 包源码阅读》17 信号量 Semaphore
学过操作系统的朋友都知道信号量,在java.util.concurrent包中也有一个关于信号量的实现:Semaphore. 从代码实现的角度来说,信号量与锁很类似,可以看成是一个有限的共享锁,即只能 ...
- 《java.util.concurrent 包源码阅读》06 ArrayBlockingQueue
对于BlockingQueue的具体实现,主要关注的有两点:线程安全的实现和阻塞操作的实现.所以分析ArrayBlockingQueue也是基于这两点. 对于线程安全来说,所有的添加元素的方法和拿走元 ...
- 《java.util.concurrent 包源码阅读》09 线程池系列之介绍篇
concurrent包中Executor接口的主要类的关系图如下: Executor接口非常单一,就是执行一个Runnable的命令. public interface Executor { void ...
- 《java.util.concurrent 包源码阅读》24 Fork/Join框架之Work-Stealing
仔细看了Doug Lea的那篇文章:A Java Fork/Join Framework 中关于Work-Stealing的部分,下面列出该算法的要点(基本是原文的翻译): 1. 每个Worker线程 ...
- 《java.util.concurrent 包源码阅读》27 Phaser 第一部分
Phaser是JDK7新添加的线程同步辅助类,作用同CyclicBarrier,CountDownLatch类似,但是使用起来更加灵活: 1. Parties是动态的. 2. Phaser支持树状结构 ...
随机推荐
- win10 uwp 获得元素绝对坐标
有时候需要获得一个元素,相对窗口的坐标,在修改他的位置可以使用. 那么 UWP 如何获得元素坐标? 我提供了一个方法,可以获得元素的坐标. 首先需要获得元素,如果没有获得元素,那么如何得到他的坐标? ...
- UWP 绘制图形
UWP图形和wpf变化不多 一般用到有椭圆.长方形.多边形.线 不过如果用的好,可以做出很漂亮的界面 一般使用画图都是使用Shape 类,Shape 类具有一个与其关联的画笔并可以呈现到屏幕,包括 L ...
- Software development process
一.Development process 1.Business/User Requirement 2.Architecture Proposal,Solution Proposal 3.Functi ...
- webpack 入门指南
很久没有更博了... 这就把最近积累用到的知识点更新到这里.. 望 共勉 什么是 webpack? webpack是近期最火的一款模块加载器兼打包工具,它能把各种资源,例如JS(含JSX).coffe ...
- Zookeeper 笔记-watch
ZooKeeper对Watch提供了什么保障 对于watch,ZooKeeper提供了这些保障: Watch与其他事件.其他watch以及异步回复都是有序的. ZooKeeper客户端库保证所有事件都 ...
- SQL&SQLite
注册博客园有一年多了,每次都是来找点资料,从来没有写过点什么,促使我开始写博客的原因主要有两点 一是在查找资料的过程中,经常需要重复的查找某个知识点,一个知识点时间长了之后总是忘记,这样重复的过程却是 ...
- go 代码的调试---打印调用堆栈
本文介绍如何打印调用堆栈进行go代码的调试. 打印堆栈使用的runtime package中的Stack()函数 func Stack(buf []byte, all bool) int Stack ...
- C# Request.InputStream 读取输入流为空的原因处理
今天在手机App测试接口的时候发现一个通过POST方式的接口 获取body中的参数一直为空,但是在数据量小的时候却可以获取到数据,开始怀疑是不是POST的长度有限制,然后在web.config中修改了 ...
- 如何用php写app接口[原创]
人生就如一列永不停止的列车,no one knows when or where to stop.总有那些美好,值得永远怀念.也总有那些希望,值得你无怨无悔的付出,追逐.去年年底带着女儿一起坐火车会湖 ...
- 面试题----寻找比一个N位数大的“下”一个数
题目描述 写出一个算法,实现如下功能: 给定一个N位数字组成的数,找出比这个数大的由相同数字组成的下一个数 例如:如果数字为 25468, 则结果为25486 如果数字为 21765, 则结果为 25 ...