线性代数之行列式的C#研究实现
最近学习机器学习 才发现以前数学没有学好 开始从线性代数开始学起 读完行列式一章写了些C#的代码学习一下。
直接上C#代码:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using System.IO; namespace LYF.Math
{
/// <summary>
/// 行列式 Determinant
/// </summary>
[SerializableAttribute]
[ComVisibleAttribute(true)]
public class Determinant<T> where T : IComparable, IFormattable, IConvertible, IComparable<T>, IEquatable<T>
{
T[,] tarr = null;
public Determinant(int n)
{
tarr = new T[n, n];
} public Determinant(T[,] arrT)
{
if (arrT == null || arrT.GetLength(0) != arrT.GetLength(1) || arrT.GetLength(0) < 1)
{
throw new MathException("不正确的数组(数组必须行列数相同且大于1)");
}
else
{
tarr=new T[arrT.GetLength(0),arrT.GetLength(0)];
SetItem(arrT);
}
} /// <summary>
/// 获取元素值
/// </summary>
/// <param name="i"></param>
/// <param name="j"></param>
/// <returns></returns>
public T this[int i, int j]
{
//实现索引器的get方法
get
{
return GetItem(i, j);
} //实现索引器的set方法
set
{
SetItem(i, j, value);
}
} /// <summary>
/// 获取元素的余子式
/// </summary>
/// <param name="i"></param>
/// <param name="j"></param>
/// <returns></returns>
public Determinant<T> A(int i, int j)
{
if (N == 1)
{
return null;
}
else if (i>N||j>N)
{
return null;
}
else
{
Determinant<T> a = new Determinant<T>(N - 1);
for (int m = 1; m <= N - 1; m++)
{
for (int n = 1; n <= N - 1; n++)
{
int p = m, q = n;
if (p >= i)
{
p = m + 1;
}
if (q >= j)
{
q = n + 1;
}
a[m, n] = this[p,q];
}
}
return a;
}
} /// <summary>
/// 设置行列式的值
/// </summary>
/// <param name="i">行数(从1开始)</param>
/// <param name="j">列数(从1开始)</param>
/// <param name="value">值</param>
public void SetItem(int i, int j, T value)
{
if (tarr == null)
{
throw new MathException("行列式未正确初始化");
}
else if (i > N || j > N)
{
throw new MathException("超出行列式索引范围");
}
else
{
tarr[i - 1, j - 1] = value;
}
} public void SetItem(T[,] arrT)
{
if (arrT == null || tarr == null)
{
throw new MathException("不能为空");
}
else if (arrT.GetLength(0) != N || arrT.GetLength(1) != N)
{
throw new MathException("传入阶数不同");
}
else
{
for (int m = 0; m <=N-1; m++)
{
for (int n = 0; n <= N- 1; n++)
{
this[m + 1, n + 1] = arrT[m, n];
}
}
}
} /// <summary>
/// 设置行列式的值
/// </summary>
/// <param name="i">行数(从1开始)</param>
/// <param name="j">列数(从1开始)</param>
/// <param name="value">值</param>
public T GetItem(int i, int j)
{
if (tarr == null)
{
throw new MathException("行列式未正确初始化");
}
else if (i > N || j > N)
{
throw new MathException("超出行列式索引范围");
}
else
{
return tarr[i-1, j-1];
}
} /// <summary>
/// 输出行列式信息
/// </summary>
/// <returns></returns>
public override string ToString()
{
StringBuilder sbRs = new StringBuilder();
if(tarr!=null)
{
for (int m = 0; m <= N - 1; m++)
{
for (int n = 0; n <= N - 1; n++)
{
sbRs.Append(string.Format("{0}\t", tarr[m, n]));
}
sbRs.Append("\n");
} }
return sbRs.ToString();
} /// <summary>
/// 获取行列式的阶数
/// </summary>
public int N
{
get{
if (tarr != null)
{
return tarr.GetLength(0);
}
else
{
return 0;
}
} } private string typeName = string.Empty;
private string GetType()
{
if (string.IsNullOrEmpty(typeName))
{
typeName=typeof(T).Name;
File.AppendAllText("E:\\op.txt", typeName);
}
return typeName; } /// <summary>
/// 获取行列式的值
/// </summary>
public T Value
{
get
{
if (N == 1)
{
return tarr[0, 0];
}
else if (N == 2)
{
return Minus(MUL(tarr[0, 0], tarr[1, 1]), MUL(tarr[0, 1], tarr[1, 0]));
}
else
{
T sum = default(T);
for (int i = 1; i <= N; i++)
{
if ((1+i) % 2 == 0)
{
//余子式正值
sum = Add(sum, MUL(this[1, i], this.A(1, i).Value));
}
else
{
//余子式负值
sum = Minus(sum, MUL(this[1, i], this.A(1, i).Value));
}
}
return sum;
} }
} /// <summary>
/// 加法
/// </summary>
/// <param name="left"></param>
/// <param name="right"></param>
/// <returns></returns>
private T Add(T left, T right)
{
switch (GetType())
{
case "Int16":
return ((T)(object)((short)(object)left + (short)(object)right));
case "Int32":
return ((T)(object)((int)(object)left + (int)(object)right));
case "Int64":
return ((T)(object)((long)(object)left + (long)(object)right));
case "Single":
return ((T)(object)((float)(object)left + (float)(object)right));
case "Double":
return ((T)(object)((double)(object)left + (double)(object)right));
case "Decimal":
return ((T)(object)((decimal)(object)left + (decimal)(object)right));
}
throw new MathException("不支持的操作类型");
} /// <summary>
/// 减法
/// </summary>
/// <param name="left"></param>
/// <param name="right"></param>
/// <returns></returns>
private T Minus(T left, T right)
{
switch (GetType())
{
case "Int16":
return ((T)(object)((short)(object)left - (short)(object)right));
case "Int32":
return ((T)(object)((int)(object)left - (int)(object)right));
case "Int64":
return ((T)(object)((long)(object)left - (long)(object)right));
case "Single":
return ((T)(object)((float)(object)left - (float)(object)right));
case "Double":
return ((T)(object)((double)(object)left - (double)(object)right));
case "Decimal":
return ((T)(object)((decimal)(object)left - (decimal)(object)right));
}
throw new MathException("不支持的操作类型");
} /// <summary>
/// 乘法
/// </summary>
/// <param name="left"></param>
/// <param name="right"></param>
/// <returns></returns>
private T MUL(T left, T right)
{
switch (GetType())
{
case "Int16":
return ((T)(object)((short)(object)left * (short)(object)right));
case "Int32":
return ((T)(object)((int)(object)left * (int)(object)right));
case "Int64":
return ((T)(object)((long)(object)left * (long)(object)right));
case "Single":
return ((T)(object)((float)(object)left * (float)(object)right));
case "Double":
return ((T)(object)((double)(object)left * (double)(object)right));
case "Decimal":
return ((T)(object)((decimal)(object)left * (decimal)(object)right));
}
throw new MathException("不支持的操作类型");
} }
}
以上代码就是对行列式的封装 可以求值获得余子式 很基本的东西 求值的话主要用了递归的方式 因为泛型的原因导致计算过程重复拆箱装箱 不过目前好像也没有什么太好的方法了。反正就是学习 所以性能无所谓了。
然后就是调用了直接上调用代码:
int[,] aaa = new int[4, 4]{{1,2,3,6},
{4,5,7,8},
{7,8,9,10},
{3,8,4,3}}; //LYF.Math.Determinant<int> d = new Determinant<int>(4);
LYF.Math.Determinant<int> d = new Determinant<int>(aaa);
d.SetItem(aaa);
Console.WriteLine("当前行列式:");
Console.WriteLine(d.ToString());
Console.WriteLine("余子式M11:");
Console.WriteLine(d.A(1, 1).ToString());
Console.WriteLine("余子式M12:");
Console.WriteLine(d.A(1, 2).ToString());
Console.WriteLine("余子式M22:");
Console.WriteLine(d.A(2, 2).ToString());
Console.WriteLine("N="+d.N);
Console.WriteLine("行列式的值为:"+d.Value.ToString());
Console.Read();
执行结果如下:
线性代数之行列式的C#研究实现的更多相关文章
- CSUOJ 1979 古怪的行列式
Description 这几天,子浩君潜心研究线性代数. 行列式的值定义如下: 其中,τ(j1j2...jn)为排列j1j2...jn的逆序数. 子浩君很厉害的,但是头脑经常短路,所以他会按照行列式值 ...
- 线性代数笔记24——微分方程和exp(At)
原文:https://mp.weixin.qq.com/s/COpYKxQDMhqJRuMK2raMKQ 微分方程指含有未知函数及其导数的关系式,解微分方程就是找出未知函数.未知函数是一元函数的,叫常 ...
- 【线性代数】5-3:克莱姆法则,逆和体积(Cramer's Rule,Inverses,and Volumes)
title: [线性代数]5-3:克莱姆法则,逆和体积(Cramer's Rule,Inverses,and Volumes) categories: Mathematic Linear Algebr ...
- [Swust OJ 643]--行列式的计算(上三角行列式变换)
题目链接:http://acm.swust.edu.cn/problem/643/ Time limit(ms): 1000 Memory limit(kb): 65535 Description ...
- TOJ4537: n阶行列式
4537: n阶行列式 Time Limit(Common/Java):1000MS/3000MS Memory Limit:65536KByteTotal Submit: 28 ...
- Python人工智能之-三大数学难点 !
1. 微积分: 定积分与不定积分.全微分.最小二乘法.二重积分.微分方程与差分方程等... 2. 线性代数: 行列式.矩阵.向量.线性方程组.矩阵的特性和特性向量.二次型等... 3. 概率论和统计学 ...
- NOIP考点
NOIP考点 基础算法 图 树 数论 数据结构 动态规划 搜索 其他算法 省选知识点汇总 图论 数据结构 字符串相关算法及数据结构 数学 计算几何 搜索 动态规划 其他算法 转自:巨佬的博客 加*号是 ...
- [省选]板块(shenben已经AFO!!!)
shenben已经AFO!!! 部分摘抄自网络 同样的,加粗是重点,星号是选学 图论 网络流(dinic,ISAP选一个,费用流写EK就行.*zkw费用流),二分图 点分治,边分治,*动态点分治 树链 ...
- woj1013 Barcelet 字符串 woj1014 Doraemon's Flashlight 几何
title: woj1013 Barcelet 字符串 date: 2020-03-18 18:00:00 categories: acm tags: [acm,字符串,woj] 字符串,字典序. 1 ...
随机推荐
- SQL SERVER 查看日志大小及日志已满的处理方法 (转)
--解决方法 --日志文件满而造成SQL数据库无法写入文件时,可用两种方法: --查看数据库日志大小 dbcc sqlperf(logspace) --清空日志. --1.打开查询分析器,输入命令 D ...
- python codis集群客户端(二) - 基于zookeeper对实例创建与摘除
在这一篇中我们实现了不通过zk来编写codis集群proxys的api,http://www.cnblogs.com/kangoroo/p/7481567.html 如果codis集群暴露zk给你的话 ...
- 史上最难的一道Java面试题 (分析篇)
博客园 匠心零度 转载请注明原创出处,谢谢! 无意中了解到如下题目,觉得蛮好. 题目如下: public class TestSync2 implements Runnable { int b = 1 ...
- 《阿里巴巴Java开发规约》插件使用介绍
一.简介 阿里巴巴于10月14日在杭州云栖大会上,正式发布了<阿里巴巴Java开发规约>扫描插件!该插件基于<阿里巴巴Java开发规约>手册内容,在扫描代码后,将不符合规约的代 ...
- java虚拟机指令dup的理解
举个例子: public class ExceptionTest{ void cantBeZero(int i) throws Exception{ throw new Exception(); } ...
- Windows 10「设置」应用完整MS-Settings快捷方式汇总
分类 设置名称 快捷方式 系统 显示 ms-settings:display 通知和操作 ms-settings:notifications 平板电脑模式 ms-settings:tabletmode ...
- Python学习笔记(七)
Python学习笔记(七): 深浅拷贝 Set-集合 函数 1. 深浅拷贝 1. 浅拷贝-多层嵌套只拷贝第一层 a = [[1,2],3,4] b = a.copy() print(b) # 结果:[ ...
- Linux入门(14)——Ubuntu常用快捷键
打开终端:ctrl + alt + T 左右分屏:ctrl + win + 箭头左或者箭头右 显示桌面:Ctrl + win + D 切换工作区:ctrl + alt + 箭头左或者箭头右 新建文件夹 ...
- parameterType 和 resultType
parameterType #{} 和 ${} 1.#{}实现的是向prepareStatement中的预处理语句中设置参数值,sql语句中#{}表示一个占位符即?. 2.使用占位符#{}可以有效防止 ...
- 【ASP.NET MVC 学习笔记】- 18 Bundle(捆绑)
本文参考:http://www.cnblogs.com/willick/p/3438272.html 1.捆绑(Bundle),一个在 View 和 Layout 中用于组织优化浏览器请求的 CSS ...