引用Numpy

import numpy as np

生成随机数据

# 200支股票
stock_cnt = 200
# 504个交易日
view_days = 504
# 生成服从正态分布:均值期望=0,标准差=1的序列
stock_day_change = np.random.standard_normal((stock_cnt, view_days))
# 使用沙盒数据,目的是和书中一样的数据环境,不需要注视掉
# stock_day_change = np.load('../gen/stock_day_change.npy')
# 打印shape (200, 504) 200行504列
print(stock_day_change.shape)
# 打印出第一支只股票,头五个交易日的涨跌幅情况
print(stock_day_change[0:1, :5])

3.1.3 索引选取和切片选择

# 0:2第一,第二支股票,0:5头五个交易日的涨跌幅数据
stock_day_change[0:2, 0:5]

3.1.4 数据转换与规整

# 2代表保留两位小数
np.around(stock_day_change[0:2, 0:5], 2)

3.1.5 逻辑条件进行数据筛选

mask = stock_day_change[0:2, 0:5] > 0.5
print(mask)

3.1.6 通用序列函数

# np.all判断序列中的所有元素是否全部是true, 即对bool序列进行与操作
# 本例实际判断stock_day_change[0:2, 0:5]中是否全是上涨的
np.all(stock_day_change[0:2, 0:5] > 0)
# np.any判断序列中是否有元素为true, 即对bool序列进行或操作
# 本例实际判断stock_day_change[0:2, 0:5]中是至少有一个是上涨的
np.any(stock_day_change[0:2, 0:5] > 0)
# 对两个序列对应的元素两两比较,maximum结果集取大,相对使用minimum为取小的结果集
np.maximum(stock_day_change[0:2, 0:5], stock_day_change[-2:, -5:])
# array([[ 0.38035486,  0.12259674, -0.2851901 , -0.00889681,  0.45731945],
       # [ 0.13380956,  2.03488293,  1.44701057, -0.92392477,  0.96930104]])
change_int = stock_day_change[0:2, 0:5].astype(int)
print(change_int)
# 序列中数值值唯一且不重复的值组成新的序列
np.unique(change_int)
# diff 前后临近数据进行减法运算
# axis=1
np.diff(stock_day_change[0:2, 0:5])
# 唯一区别 axis=0
np.diff(stock_day_change[0:2, 0:5], axis=0)
#where 数据筛选
tmp_test = stock_day_change[-2:, -5:]
print(np.where(tmp_test > 0.5, 1, 0))

统计概念与函数使用

stock_day_change_four = stock_day_change[:4, :4]
print('最大涨幅 {}'.format(np.max(stock_day_change_four, axis=1)))
print('最大跌幅 {}'.format(np.min(stock_day_change_four, axis=1)))
print('振幅幅度 {}'.format(np.std(stock_day_change_four, axis=1)))
print('平均涨跌 {}'.format(np.mean(stock_day_change_four, axis=1)))

3.2.2 统计基础概念

a_investor = np.random.normal(loc=100, scale=50, size=(100, 1))
b_investor = np.random.normal(loc=100, scale=20, size=(100, 1))

# a交易者
print('交易者期望{0:.2f}元, 标准差{1:.2f}, 方差{2:.2f}'.format(a_investor.mean(), a_investor.std(), a_investor.var()))
# b交易者
print('交易者期望{0:.2f}元, 标准差{1:.2f}, 方差{2:.2f}'.format(b_investor.mean(), b_investor.std(), b_investor.var()))

正态分布

import scipy.stats as scs

# 均值期望
stock_mean = stock_day_change[0].mean()
# 标准差
stock_std = stock_day_change[0].std()
print('股票0 mean均值期望:{:.3f}'.format(stock_mean))
print('股票0 std振幅标准差:{:.3f}'.format(stock_std))

# 绘制股票0的直方图
plt.hist(stock_day_change[0], bins=50, normed=True)

# linspace从股票0 最小值-> 最大值生成数据
fit_linspace = np.linspace(stock_day_change[0].min(),
                           stock_day_change[0].max())

# 概率密度函数(PDF,probability density function)
# 由均值,方差,来描述曲线,使用scipy.stats.norm.pdf生成拟合曲线
pdf = scs.norm(stock_mean, stock_std).pdf(fit_linspace)
# plot x, y
plt.plot(fit_linspace, pdf, lw=2, c='r')

# 100个赌徒进场开始,胜率0.45,赔率1.04,手续费0.01
moneys = [casino(0.45, commission=0.01, win_once=1.02, loss_once=0.98)
          for _ in np.arange(0, gamblers)]
_ = plt.hist(moneys, bins=30)

伯努利分布

Python中的Numpy的更多相关文章

  1. Python中的Numpy、SciPy、MatPlotLib安装与配置

    Python安装完Numpy,SciPy和MatplotLib后,可以成为非常犀利的科研利器.网上关于这三个库的安装都写得非常不错,但是大部分人遇到的问题并不是如何安装,而是安装好后因为配置不当,在使 ...

  2. Python中的numpy函数的使用ones,zeros,eye

    在看别人写的代码时,看到的不知道的函数,就在这里记下来. 原文是这样用的: weights = ones((numfeatures,1)) 在python中help(): import numpy a ...

  3. Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过nu ...

  4. Python中的numpy模块解析

    numpy 1.  创建对象 维度(dimensions):轴 轴的个数:秩(rank) Numpy最重要的一个特点就是其N维数组对象(即ndarray) 创建数组最简单的函数就是用array函数: ...

  5. Python中的Numpy包

    通过本次学习你可以掌握Numpy Numpy介绍(获取地址)更多Numpy函数 numpy的主要对象是同质多维数组.也就是在一个元素(通常是数字)表中,元素的类型都是相同的. numpy的数组类被成为 ...

  6. Python中安装numpy,scipy,matplotlib安装方法

    这个吧,说简单也简单,说难吧我捣鼓了两天才弄出来,真是头发都急白了.其实只要一个网址就搞定了,嘿嘿 http://www.lfd.uci.edu 这里面有你需要的任何东西,当你运行python imp ...

  7. python 中range numpy.arange 和 numpy.linspace 的区别

    1.返回值不同 range返回一个range对象,numpy.arange和numpy.linspace返回一个数组. 2.np.arange的步长可以为小数,但range的步长只能是整数. 与Pyt ...

  8. Python中的numpy库介绍!

    转自:https://blog.csdn.net/codedz/article/details/82869370 机器学习算法中大部分都是调用Numpy库来完成基础数值计算的.安装方法: pip3 i ...

  9. Python中 list, numpy.array, torch.Tensor 格式相互转化

    1.1 list 转 numpy ndarray = np.array(list) 1.2 numpy 转 list list = ndarray.tolist() 2.1 list 转 torch. ...

随机推荐

  1. windows phone 切换多语言时,商店标题显示错误的问题

    前段时间,用业余时间写了一款 wp8 app(“超级滤镜”商店,中文地址:英文地址),在多语言的时候,给 app title 和 app tile title 进行多语言时(参考 MSDN),中文商店 ...

  2. php的json校验json-schema

    客户端和服务端的http信息传递,采用json几乎成了标配.json格式简单,易于处理,不过由于没有格式规定,无法校验. 好在php有json-schema模块,可以用来验证json是否符合规定的格式 ...

  3. scala,spark练习题提高

    1.求每家公司有哪些产品 val arr3 = List("Apache" -> "Spark", "Apache" -> &q ...

  4. buildroot 修改root密码后无法登录ssh解决方法

    客户说想修改root密码后再登录ssh, 研究了一下,是因为ssh登录是匹配了之前的 密码生成文件,只要把之前的密码生成文件删除就可以. 过程如下: 删除 /etc/ssh/ssh_host*. rm ...

  5. [uboot]uboot如何引导系统

    转自:http://bbs.elecfans.com/jishu_455028_1_1.html 如6410的bootcmd和bootargs默认存在于uboot1.1.6/include/confi ...

  6. 实现ping程序

    //ping.h头文件如下所示: #define ICMP_ECHOREPLY 0 /*ECHO应答*/ #define ICMP_ECHO 8 /*ECHO请求*/ #define BUFSIZE ...

  7. 数据库递归查询(CET)

    IF OBJECT_ID('[ta]') IS NOT NULL      DROP TABLE [ta] Go CREATE TABLE ta([id] INT,[name] NVARCHAR(4) ...

  8. git clone 故障 fatal could not create work tree dir

    问题如上图,原因是openWRT目录权限的问题,该目录是新创建的查看目录权限后发现该目录只对root有读写权限,对所有者及其他用户无读写权限.最简单的chmod 777 openWRT即可解决问题.

  9. EasyUI 另一种form提交方式

    (function ($) { window.XW = {}; //全局系统对象 //异步请求统一调用方法 XW.ajax = function (options, param, callback) ...

  10. 关于json动态拼接响应数据

    在EasyUI http://www.jeasyui.com/demo/main/get_users.php 响应数据如下格式: { "total": "11" ...