luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)
题目大意:给定一个网格图,有些点是关键点,选择格点有代价,求把所有关键点联通的最小代价
斯坦纳树模板题
斯坦纳树问题:给定一个图结构,有一些点是关键点,求把这些关键点联通的最小代价e
斯坦纳树问题其实是最小生成树MST问题的扩展
考虑状压DP,设f[x][s]
代表当前以x为根的树,关键点选取状态集合为s时的最小代价
考虑s由两个子集s1和s2转移过来,则DP方程为f[x][s]=f[x][s1]+f[x][s2]
。如果是点权,去重还要减去val[x]
。
考虑s由其它点转移过来,那么就枚举其它点,f[x][s]=f[y][s]+val[x][y]
,发现这其实就是最短路的转移形式,我们一开始把所有f<inf的点扔队列里跑spfa就行了
初始化:对于关键点x,有f[x][只包含x的集合]
=0,其它为inf
最后输出的答案即为f[某个关键点][(1<<tot)-1]
瞎写的板子:
for (int s = 1; s < (1 << tot); s++)
{
for (int i = 1; i <= n; i++)
{
for (s1 + s2 == s)
{
chkmin(f[i][s], f[i][s1]+f[i][s2]);
if (f[i][s] < inf) q.push(i), vis[i] = true;
}
}
while (!q.empty())
{
int x = q.front(); q.pop(), vis[x] = false;
for (int i : out[x]) if (f[x][s] + dis[x][i] < f[i][s])
{
f[i][s] = f[x][s] + dis[x][i];
if (vis[i] == false) vis[i] = true, q.push(i);
}
}
}
本题题解:
直接套用板子即可。
由于还要输出方案,我们维护一个pre,记录这个状态从哪个状态转移过来的,dfs一遍就行了。
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
struct data { int x, y, s; } pre[15][15][1050];
int n, m, tot, mp[15][15], f[15][15][1050], ex, ey;
bool vis[15][15], ans[15][15];
void dfs(int x, int y, int s)
{
if (pre[x][y][s].s == 0) return;
ans[x][y] = true;
dfs(pre[x][y][s].x, pre[x][y][s].y, pre[x][y][s].s);
if (pre[x][y][s].x == x && pre[x][y][s].y == y) dfs(pre[x][y][s].x, pre[x][y][s].y, pre[x][y][s].s ^ s);
}
int main()
{
scanf("%d%d", &n, &m); memset(f, 0x3f, sizeof(f));
for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++)
{
scanf("%d", &mp[i][j]);
if (mp[i][j] == 0) f[i][j][1 << (tot++)] = 0, ex = i, ey = j;
}
for (int s = 1; s < (1 << tot); s++)
{
queue<int> qx, qy;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
for (int s1 = s; s1 > 0; s1 = (s1 - 1) & s)
{
int s2 = s1 ^ s;
if (f[i][j][s] > f[i][j][s1] + f[i][j][s2] - mp[i][j])
{
f[i][j][s] = f[i][j][s1] + f[i][j][s2] - mp[i][j];
pre[i][j][s] = (data){i, j, s1};
}
}
if (vis[i][j] == false && f[i][j][s] != 0x3f3f3f3f) qx.push(i), qy.push(j), vis[i][j] = true;
}
}
while (!qx.empty())
{
int x = qx.front(), y = qy.front(); qx.pop(), qy.pop(); vis[x][y] = false;
for (int d = 0; d < 4; d++)
{
int nx = x + dx[d], ny = y + dy[d];
if (nx >= 1 && nx <= n && ny >= 1 && ny <= m)
{
if (f[nx][ny][s] > f[x][y][s] + mp[nx][ny])
{
f[nx][ny][s] = f[x][y][s] + mp[nx][ny];
pre[nx][ny][s] = (data){x, y, s};
if (vis[nx][ny] == false) vis[nx][ny] = true, qx.push(nx), qy.push(ny);
}
}
}
}
}
printf("%d\n", f[ex][ey][(1 << tot) - 1]);
dfs(ex, ey, (1 << tot) - 1);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
if (mp[i][j] == 0) printf("x");
else if (ans[i][j]) printf("o");
else printf("_");
printf("\n");
}
return 0;
}
luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)的更多相关文章
- [WC2008]游览计划 状压DP,斯坦纳树
---题面--- 题解: 这是一道斯坦纳树的题,用状压+spfa来解决 什么是斯坦纳树? 一开始还以为是数据结构来着,其实跟最小生成树很像,大致就是最小生成树只能在各个点之间直接相连,而斯坦纳树则允许 ...
- [WC2008]游览计划(状压dp)
题面太鬼畜不粘了. 题意就是给一张n*m的网格图,每个点有点权,有k个关键点,让你把这k个关键点连成一个联通快的最小代价. 题解 这题nmk都非常小,解法肯定是状压,比较一般的解法插头dp,但不太好写 ...
- [bzoj2595][WC2008]游览计划/[bzoj5180][Baltic2016]Cities_斯坦纳树
游览计划 bzoj-2595 wc-2008 题目大意:题目链接.题目连接. 注释:略. 想法:裸题求斯坦纳树. 斯坦纳树有两种转移方式,设$f[s][i]$表示联通状态为$s$,以$i$为根的最小代 ...
- [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1020 Solved: 552[Submit][Statu ...
- 动态规划:状压DP-斯坦纳树
最小生成树是最小斯坦纳树的一种特殊情况 最小生成树是在给定的点集和边中寻求最短网络使所有点连通 而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小 BZOJ2595 题意是给定一个棋盘 ...
- BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)
题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...
- 【状压dp】Trie 树 @中山纪念中学20170304
目录 Trie 树 PROBLEM 题目描述 输入 输出 样例输入 样例输出 SOLUTION CODE Trie 树 PROBLEM 题目描述 字母(Trie)树是一个表示一个字符串集合中所有字符串 ...
- HDU.3311.Dig The Wells(DP 斯坦纳树)
题目链接 \(Description\) 有n座庙.一共n+m个点,可以在任意一些点修建水井,不同位置花费不同:也可以某些点之间连无向边共享水.求使n座庙都有水的最小花费. \(Solution\) ...
- 【BZOJ 2595】2595: [Wc2008]游览计划 (状压DP+spfa,斯坦纳树?)
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1572 Solved: 7 ...
随机推荐
- ubuntu Qt5 opencv3.4 项目配置
#------------------------------------------------- # # Project created by QtCreator 2019-03-25T14:14 ...
- C#在控制台输出异常所在的行数
对于异常,我们经常用try-catch语句来处理,一种常见的方式是在catch语句块用MessageBox.Show("异常")这种弹窗的方式来报告异常.但是有些时候,有些异常发生 ...
- Python一行代码搞定的事情
python -m SimpleHTTPServer 8000 http://127.0.0.1:8000/ 有了这一行代码分享本地盘内容就不需要FTP了. pydoc:Python文档工具 pyth ...
- [Token] 从index.jsp中获取Token
import com.eviware.soapui.support.GroovyUtils def groovyUtils = new GroovyUtils( context ) def holde ...
- oracle 环境变量(中文显示乱码)
NLS_LANGSIMPLIFIED CHINESE_CHINA.ZHS16GBK
- Word2013写CSDN博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- Quartus中代码字体大小的调整方法
Quartus中代码大小的调整方法 网友 "一纸玫瑰"整理 第一步:点击Tools(工具) 第二步:点击Options(选项) 第三步:Text Editor(文本编辑)/Font ...
- 【微服务架构】SpringCloud之Feign(五)
Feign简介 Feign 是一个声明web服务客户端,这便得编写web服务客户端更容易,使用Feign 创建一个接口并对它进行注解,它具有可插拔的注解支持包括Feign注解与JAX-RS注解,Fei ...
- Java的StringTokenizer类
StringTokenizer是java中object类的一个子类,继承自 Enumeration接口.此类允许一个应用程序进入一个令牌(tokens),而且StringTokenizer类用起来比S ...
- jmeter-性能监控(InfluxDB+Grafana)
测试结果实时监控:jmeter+influxdb+grafana InfluxDB:存储实时数据的DB Grafana:DB中存储的实时数据可以在浏览器查看 --------------------- ...