题目大意:在一张无向图中,最大的节点集使得集合内任意两个节点都能到达对方。

题目分析:找出所有的强连通分量,将每一个分量视作大节点,则原图变成了一张DAG。将每个分量中的节点个数作为节点权值,题目便转化为了在DAG中找一条有最大权值和的路径,可以DP解决。

代码如下:

# include<iostream>
# include<cstdio>
# include<vector>
# include<stack>
# include<cstring>
# include<algorithm>
using namespace std; const int maxn=1005;
int n,m,scc_cnt,dfs_cnt,pre[maxn],low[maxn],sccno[maxn],scc[maxn],dp[maxn];
vector<int>G[maxn],G1[maxn];
stack<int>S; void read()
{
int a,b;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i) G[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
--a,--b;
G[a].push_back(b);
}
} void dfs(int u)
{
low[u]=pre[u]=++dfs_cnt;
S.push(u);
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(pre[u]==low[u]){
++scc_cnt;
while(1)
{
int x=S.top();
S.pop();
++scc[scc_cnt];
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
} void findScc()
{
dfs_cnt=scc_cnt=0;
memset(pre,0,sizeof(pre));
memset(low,0,sizeof(low));
memset(scc,0,sizeof(scc));
memset(sccno,0,sizeof(sccno));
for(int i=0;i<n;++i) if(!pre[i])
dfs(i);
} int DP(int u)
{
if(dp[u]!=-1)
return dp[u];
int res=0;
for(int i=0;i<G1[u].size();++i){
int v=G1[u][i];
res=max(res,DP(v));
}
return dp[u]=scc[u]+res;
} void solve()
{
for(int i=0;i<=scc_cnt;++i)
G1[i].clear();
vector<int>::iterator it;
for(int u=0;u<n;++u){
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(sccno[u]!=sccno[v]){
it=find(G1[sccno[u]].begin(),G1[sccno[u]].end(),sccno[v]);
if(it==G1[sccno[u]].end())
G1[sccno[u]].push_back(sccno[v]);
}
}
}
memset(dp,-1,sizeof(dp));
int ans=0;
for(int i=1;i<=scc_cnt;++i)
ans=max(ans,DP(i));
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
read();
findScc();
solve();
}
return 0;
}

  

UVA-11324 The Largest Clique (强连通+DP)的更多相关文章

  1. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  2. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  3. UVa 11324 The Largest Clique (强连通分量+DP)

    题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...

  4. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  5. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  6. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  7. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  8. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  9. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  10. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

随机推荐

  1. Python误区之strip,lstrip,rstrip

    最近在处理数据的时候,想把一个字符串开头的“)”符号去掉,所以使用targetStr.lstrip(")"),发现在 将处理完的数据插入到数据库时会出现编码报错,于是在网上搜到了这 ...

  2. python全栈开发从入门到放弃之递归函数的调用

    1.递归效率低,需要在进入下一次递归时保留当前的状态,见51cto博客 解决方法是尾递归,即在函数的最后一步(而非最后一行)调用自动但是python又没有尾递归,且对递归层级做了限制 必须有一个明确的 ...

  3. qqwry.dat输出乱码问题及maven打包后资源文件大小不一致的问题

    使用qqwry.dat进行IP地理位置查询时,遇到一个问题即在本地测试时查询纯真库时正常,没有任何问题,但是打包传到服务器上便出现了乱码问题. 1.首先排除服务器的字符集编码的影响 使用如下命令验证了 ...

  4. Java语法糖设计

    语法糖 Java语法糖系列,所以首先讲讲什么是语法糖.语法糖是一种几乎每种语言或多或少都提供过的一些方便程序员开发代码的语法,它只是编译器实现的一些小把戏罢了,编译期间以特定的字节码或者特定的方式对这 ...

  5. express+mongodb+mongoose增删改查

    增加 修改 删除 数据库 这是一个前后端分离的项目前端项目地址:https://gitee.com/dingshao/express_qd.git后端项目地址:https://gitee.com/di ...

  6. [HZNUOJ] 使用Excel + Word 批量制作准考证

    一般程序设计考试或者ACM比赛都会使用临时账号登录,这时候就需要批量制作密码条 首先需要用Excel 存储队伍的信息 比如像这样分门别类的放好 然后在word 中制作好密码条样式 选择邮件->开 ...

  7. NC开发笔记指导

    修改端口 InvocationInfoProxy.getInstance().get().getUserCode(); 前台 Nchome F:\JAVA\Projects\ERPEHROA\ufid ...

  8. centos7防火墙的简单配置介绍

    centos7版本 1.查看已开放的端口(默认不开放任何端口) firewall-cmd --list-ports 2.开启80端口 firewall-cmd --zone=public(作用域) - ...

  9. 在安装好MySql后忘记root的密码,或者给root添加密码

    一.编辑MySql的配置文件:my.ini(在MySql安装目录下). 打开配置文件,在文件最后一行添加:skip-grant-tables,然后保存退出. 意思为就是在启mysql时不启动grant ...

  10. 【分库分表】sharding-jdbc—解决的问题

    一.遇到的问题 随着互联网技术和业务规模的发展,单个db的表里数据越来越多,sql的优化已经作用不明显或解决不了问题了,这时系统的瓶颈就是单个db了(或单table数据太大).这时候就涉及到分库分表的 ...