题目大意:在一张无向图中,最大的节点集使得集合内任意两个节点都能到达对方。

题目分析:找出所有的强连通分量,将每一个分量视作大节点,则原图变成了一张DAG。将每个分量中的节点个数作为节点权值,题目便转化为了在DAG中找一条有最大权值和的路径,可以DP解决。

代码如下:

# include<iostream>
# include<cstdio>
# include<vector>
# include<stack>
# include<cstring>
# include<algorithm>
using namespace std; const int maxn=1005;
int n,m,scc_cnt,dfs_cnt,pre[maxn],low[maxn],sccno[maxn],scc[maxn],dp[maxn];
vector<int>G[maxn],G1[maxn];
stack<int>S; void read()
{
int a,b;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i) G[i].clear();
while(m--)
{
scanf("%d%d",&a,&b);
--a,--b;
G[a].push_back(b);
}
} void dfs(int u)
{
low[u]=pre[u]=++dfs_cnt;
S.push(u);
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(!pre[v]){
dfs(v);
low[u]=min(low[u],low[v]);
}else if(!sccno[v])
low[u]=min(low[u],pre[v]);
}
if(pre[u]==low[u]){
++scc_cnt;
while(1)
{
int x=S.top();
S.pop();
++scc[scc_cnt];
sccno[x]=scc_cnt;
if(x==u)
break;
}
}
} void findScc()
{
dfs_cnt=scc_cnt=0;
memset(pre,0,sizeof(pre));
memset(low,0,sizeof(low));
memset(scc,0,sizeof(scc));
memset(sccno,0,sizeof(sccno));
for(int i=0;i<n;++i) if(!pre[i])
dfs(i);
} int DP(int u)
{
if(dp[u]!=-1)
return dp[u];
int res=0;
for(int i=0;i<G1[u].size();++i){
int v=G1[u][i];
res=max(res,DP(v));
}
return dp[u]=scc[u]+res;
} void solve()
{
for(int i=0;i<=scc_cnt;++i)
G1[i].clear();
vector<int>::iterator it;
for(int u=0;u<n;++u){
for(int i=0;i<G[u].size();++i){
int v=G[u][i];
if(sccno[u]!=sccno[v]){
it=find(G1[sccno[u]].begin(),G1[sccno[u]].end(),sccno[v]);
if(it==G1[sccno[u]].end())
G1[sccno[u]].push_back(sccno[v]);
}
}
}
memset(dp,-1,sizeof(dp));
int ans=0;
for(int i=1;i<=scc_cnt;++i)
ans=max(ans,DP(i));
printf("%d\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
read();
findScc();
solve();
}
return 0;
}

  

UVA-11324 The Largest Clique (强连通+DP)的更多相关文章

  1. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  2. UVA 11324 The Largest Clique(强连通分量+缩点DAG的DP)

    题意:给定一个有向图,求出一个最大的结点集,这个节点集中的随意两个点之间至少一个能到达还有一个点. 思路:假设一个点在这个节点集中,那么它所在的强连通分量中的点一定所有在这个节点集中,反之亦然, 求出 ...

  3. UVa 11324 The Largest Clique (强连通分量+DP)

    题意:给定一个有向图,求一个最大的结点集,使得任意两个结点,要么 u 能到 v,要么 v 到u. 析:首先,如果是同一个连通分量,那么要么全选,要么全不选,然后我们就可以先把强连通分量先求出来,然后缩 ...

  4. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  5. uva 11324 The Largest Clique(强连通分量缩点+DAG动态规划)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=25&page=sh ...

  6. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  7. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  8. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  9. UVA 11324 The Largest Clique (强连通分量,dp)

    给出一个有向图,求一个最大的结点集合,任意两个点u,v.u可到达v或v可到达u. 一个强连通分量肯定一起选的.而且只能在一条路径上. 所以先找出所有scc,然后缩点找一条最大权的路径,按拓扑序跑DAG ...

  10. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

随机推荐

  1. 关于手机适配中的rem的学习随笔

    githup 下载地址 :https://github.com/comjustforfun/remformobile adaptivejs利用rem解决移动端页面开发的自适应问题 页面模板初始化的时候 ...

  2. [golang note] 内建类型

    基础类型 √ golang内建基础类型有布尔类型.整数类型.浮点类型.复数类型.字符串类型.字符类型和错误类型. 复合类型 √ golang支持的复合类型有指针.数组.数组切片.字典.通道.结构体和接 ...

  3. luaIDE选择

    luaIDE选择 本人测试过各种luaIDE, 包括luaStudio, 不过我还是推荐eclipse+ldt的方式: http://zengrong.net/post/1951.htm 原因如下: ...

  4. [笔记]mosh使用笔记

    听说mosh好使,那么怎么在Mac本下使用mosh来登录Ubuntu及AWS服务器呢? mosh介绍 mosh官网在:https://mosh.org/ 代码开源在:https://github.co ...

  5. 将jar包发布到nexus仓库

    版本的快速迭代不适合release发布到仓库,snapshot方便版本的快速迭代. 1.pom改为snapshot <dependency> <groupId>com.sf.c ...

  6. Problem A. Array Factory XVII Open Cup named after E.V. Pankratiev Stage 4: Grand Prix of SPb, Sunday, Octorber 9, 2016

    思路: 直接二分长度不可行,因为有负数. 考虑枚举坐便删l个数,那如果可以在短时间内求出符合条件的右边最小删的数的个数,这题便可做了. 即:当左边删l个数时,要使sum[n]-sum[l]-fsum[ ...

  7. web.xml context-param配置

    context-param 为上下文初始化参数 解析:每个<context-param>元素含有一对参数名和参数值(param-name和param-value),用作应用的Servlet ...

  8. shell进阶教程

    背景:就自己常用的shell脚本写作风格,总结了一些知识点.也是作为交接工作的一部分文档.部分内容单独写 #!/bin/sh # shell脚本进阶教程 # 1.常用知识点:变量设置/日期设置/格式化 ...

  9. 关于JavaScript对象,你所不知道的事(二)- 再说属性

    说完了对象那些不常用的冷知识,是时候来看看JavaScript中对象属性有哪些有意思的东西了. 不出你所料,对象属性自然也有其相应的特征属性,但是这个话题有点复杂,让我们先从简单的说起,对象属性的分类 ...

  10. JS时间和字符串的相互转换 Date+String

    1.js字符串转换成时间 1.1方法一:输入的时间格式为yyyy-MM-dd function convertDateFromString(dateString) { if (dateString) ...