试题描述
求一个图删除一个点之后,联通块最多有多少。
输入
多组数据。第一行两个整数 P,C 表示点数和边数。
接下来 C 行每行两个整数 p1,p2,表示 p1 与 p2 有边连接,保证无重边。读入以 0 0 结束。
输出
输出若干行,表示每组数据的结果。
输入示例
3 3
0 1
0 2
2 1
4 2
0 1
2 3
3 1
1 0
0 0
输出示例
1
2
2

详解参考https://blog.csdn.net/u013480600/article/details/30976823。

在dfs的时候,我们用cut[i]==X表示在dfs树中当i节点被删除时,i节点的X个儿子被切割开来(可以认为cut[i]是i节点与它的儿子连接的桥边的数目)。注意:如果i是根且其儿子只有1个,虽然i不是割点,cut[i]依然=1。如果i节点非割点,那么cut[i]=0。如果i是割点,那么cut[i]就是i被删除后将割出来的儿子数目。

然后我们求出了每个点的cut[i]值,即i点被删除,会有cut[i]个儿子树被割出来。如果i是dfs树的非根节点,那么cut[i]== 切除i之后增加的连通分量数目。如果i是dfs树的根节点,那么cut[i]-1才是切除i之后增加的连通分量数目(想想是不是)。

如果原始cut[i]=0,表示i是孤立的一点,此时cut[i]-1=-1.

如果原始cut[i]=1,表示i为根且有一个儿子,此时cut[i]-1=0.

如果原始cut[i]>=2,表示i为根且分割了>=2个儿子,此时cut[i]-1>=1.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#define MAXN 100010
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define in(a) a=read()
using namespace std;
inline int read(){
int f=,x=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
int n,m,cnt,ans;
int total=,head[MAXN],to[MAXN<<],nxt[MAXN<<];
int dfn[MAXN],low[MAXN],sum[MAXN];
inline void adl(int a,int b){
total++;
to[total]=b;
nxt[total]=head[a];
head[a]=total;
return ;
}
inline void tarjan(int u,int f){
low[u]=dfn[u]=++cnt;
for(int e=head[u];e;e=nxt[e]){
if(!dfn[to[e]]){
tarjan(to[e],u);
low[u]=min(low[to[e]],low[u]);
if(low[to[e]]>=dfn[u]) sum[u]++;
}
else if(to[e]!=f) low[u]=min(low[u],dfn[to[e]]);
}
return ;
}
int main(){
while(scanf("%d%d",&n,&m)){
if(n== && m==) return ;
int a,b;
total=cnt=ans=;
memset(head,,sizeof(head));
memset(dfn,,sizeof(head));
memset(low,,sizeof(low));
memset(sum,,sizeof(sum));
REP(i,,m){
in(a);in(b);
adl(a,b);
adl(b,a);
}
int num=;
ans=-;
REP(i,,n-)
if(!dfn[i]){
num++;
tarjan(i,-);
sum[i]--;
}
REP(i,,n-) ans=max(ans,sum[i]);
cout<<ans+num<<endl;
}
return ;
}

poj2117 Electricity的更多相关文章

  1. 无向连通图求割点(tarjan算法去掉改割点剩下的联通分量数目)

    poj2117 Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3603   Accepted: 12 ...

  2. Tarjan求割点和桥

    by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多, ...

  3. 备战noip week8

    POJ1144 网络 description: 给出一张\(N\)个点的无向图,求其中割点的个数 data range: \(N\le 100\) solution: 一道模板题(但是读入实在是把我恶 ...

  4. poj 2117 Electricity【点双连通求删除点后最多的bcc数】

    Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4727   Accepted: 1561 Descr ...

  5. 【POJ】2117 Electricity

    无向图求割点和连通块. /* POJ2117 */ #include <iostream> #include <vector> #include <algorithm&g ...

  6. TZOJ 2546 Electricity(去掉割点后形成的最大连通图数)

    描述 Blackouts and Dark Nights (also known as ACM++) is a company that provides electricity. The compa ...

  7. electricity meter就是电表

    英式英语metre意思是度量衡里面的单位:米 美式英语拼为 meter 除了“米”,还有一个意思是“计量器”,比如 parking meter就是是路边停车投币计时器,cab meter就是出租车的计 ...

  8. POJ—— 2117 Electricity

    Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5620   Accepted: 1838 Descr ...

  9. Electricity POJ - 2117 + SPF POJ - 1523 去除割点后求强连通分量个数问题

    Electricity POJ - 2117 题目描述 Blackouts and Dark Nights (also known as ACM++) is a company that provid ...

随机推荐

  1. thinkphp 漂亮的分页样式

    ---恢复内容开始--- 首先:需要两个文件 page.class.php page.css 1.在TP原有的 page.class.php 文件稍作修改几条代码就可以了, 修改过的地方我会注释, 2 ...

  2. 使用navicat for sqlserver 把excel中的数据导入到sqlserver数据库

    以前记得使用excel向mysql中导入过数据,今天使用excel向sqlserver2005导入了数据,在此把做法记录一下 第一步:准备excel数据,在这个excel中有3个sheet,每个she ...

  3. csu 1803(余数分类)

    1803: 2016 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 565  Solved: 364[Submit][Status][Web Board ...

  4. csu 1555(线段树经典插队模型-根据逆序数还原序列)

    1555: Inversion Sequence Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: 469  Solved: 167[Submit][Sta ...

  5. 理解 pkg-config 工具(linux编译辅助工具)

    转:http://www.jb51.net/LINUXjishu/86519.html 你在 Unix 或 Linux 下开发过软件吗?写完一个程序,编译运行完全正常,在你本机上工作得好好的,你放到源 ...

  6. PhpStorm函数注释的设置

    首先,PhpStorm中文件.类.函数等注释的设置在:setting->Editor->FIle and Code Template->Includes下设置即可,其中方法的默认是这 ...

  7. java EE : http 协议之请求报文、响应报文

    1 HTTP协议特点 1)客户端->服务端(请求request)有三部份 a)请求行 b)请求头 c)请求的内容,如果没有,就是空白字符 2)服务端->客户端(响应response)有三部 ...

  8. JS 数据类型转换以其他

    JavaScript 是一种弱类型的语言,也就是没有类型限制,变量可以随时被赋予任意值. 同时,在程序运行过程中,类型会被自动确认的.因此,这就是涉及到数据的类型转换.在 JS 的世界中,数据类型转换 ...

  9. easyui layout 左右面板折叠后 显示标题

    (function($){ var buttonDir = {north:'down',south:'up',east:'left',west:'right'};    $.extend($.fn.l ...

  10. Codeforces Round #371 (Div. 1) C - Sonya and Problem Wihtout a Legend

    C - Sonya and Problem Wihtout a Legend 思路:感觉没有做过这种套路题完全不会啊.. 把严格单调递增转换成非严格单调递增,所有可能出现的数字就变成了原数组出现过的数 ...