收获:

当一个东西的取值有限时,我们可以枚举它,然后统计它被计算了多少次。

 #include <cstdio>
#include <iostream>
using namespace std; typedef long long dnt; int prm[], isnot[], mu[], f[], ptot; void init( int n ) {
mu[] = ;
for( int i=; i<=n; i++ ) {
if( !isnot[i] ) {
prm[++ptot] = i;
mu[i] = -;
}
for( int j=; j<=ptot && i*prm[j]<=n; j++ ) {
isnot[i*prm[j]]=true;
if( i%prm[j]== ) {
mu[i*prm[j]] = ;
break;
}
mu[i*prm[j]] = -mu[i];
}
}
for( int i=; i<=ptot; i++ ) {
int p = prm[i];
for( int j=p; j<=n; j+=p )
f[j] += mu[j/p];
}
for( int i=; i<=n; i++ )
f[i] += f[i-];
}
dnt calc( dnt n, dnt m ) {
if( n>m ) swap(n,m);
dnt rt = ;
for( int i=; i<=n; i++ ) {
int ii = min( n/(n/i), m/(m/i) );
rt += (f[ii]-f[i-])*(n/i)*(m/i);
i = ii;
}
return rt;
}
int main() {
int T;
init( );
scanf( "%d", &T );
while( T-- ) {
int n, m;
scanf( "%d%d", &n, &m );
printf( "%lld\n", calc(n,m) );
}
}

bzoj 2820的更多相关文章

  1. 莫比乌斯反演 BZOJ 2820

    莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Sol ...

  2. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  3. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  6. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  7. BZOJ 2820 YY的GCD

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 有种方法是枚举质数然后用BZOJ2301来做但是超时了... 具体式子大概张这样: ...

  8. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  9. ●BZOJ 2820 YY的GCD

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...

  10. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

随机推荐

  1. NYOJ 1272 表达式求值 第九届省赛 (字符串处理)

    title: 表达式求值 第九届省赛 nyoj 1272 tags: [栈,数据结构] 题目链接 描述 假设表达式定义为: 1. 一个十进制的正整数 X 是一个表达式. 2. 如果 X 和 Y 是 表 ...

  2. PHP开发-最简单的数据库操作,使用ezSQL

    PHP数据库操作使用ezSQL来实现,简单好用. 如果用的是mysql数据库,将下载的ezSQL文件中的mysql和shared连个文件夹拷贝到PHP工程目录中引用即可. 在PHP文件中 // Inc ...

  3. Python中单引号,双引号,三引号

    1.单引号与双引号的区别 s1=‘let‘s go’(明显我们是想用单引号表示let’s go这个字符串的,但是python只知道用‘’来表示字符串,所以python就把字符串中的‘字符当成单引号处理 ...

  4. 导航狗IT周报第十五期(July 8, 2018)

    摘要:Seclists.Org: 微信支付SDK存在XXE漏洞:WordPress 4.9.6存在文件删除漏洞:linux中常用的文件打包/解包与压缩/解压缩命令总结… 安全播报 Seclists.O ...

  5. juery中监听input的变化事件

    $('#searchValue').bind('input propertychange', function() { searchFundList(); });

  6. C#串口serialPort操作

    现在大多数硬件设备均采用串口技术与计算机相连,因此串口的应用程序开发越来越普遍.例如,在计算机没有安装网卡的情况下,将本机上的一些信息数据 传输到另一台计算机上,那么利用串口通信就可以实现.运行本程序 ...

  7. 20165301 预备作业二:学习基础和C语言基础调查

    <做中学>读后感及C语言学习调查 读<做中学>有感 娄老师在文章中多次提到「做中学(Learning By Doing)」的概念,并通过娄老师自己的减肥经历.五笔练习经历.乒乓 ...

  8. [MySQL]You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column

    执行update语句,出现问题: 问题描述: You are using safe update mode and you tried to update a table without a WHER ...

  9. Python写网络爬虫爬取腾讯新闻内容

    最近学了一段时间的Python,想写个爬虫,去网上找了找,然后参考了一下自己写了一个爬取给定页面的爬虫. Python的第三方库特别强大,提供了两个比较强大的库,一个requests, 另外一个Bea ...

  10. Web前端开发最佳实践(3):前端代码和资源的压缩与合并

    一般在网站发布时,会压缩前端HTML.CSS.JavaScript代码及用到的资源文件(主要是图片文件),目的是加快文件在网络中的传输,让网页更快的展现.当然,CDN分发.缓存等方式也是加快代码或资源 ...