pala提出的问题: 十本不同的书放在书架上。现重新摆放,使每本书都不在原来放的位置。有几种摆法? 

这个问题推广一下,就是错排问题: n个有序的元素应有n!种不同的排列。如若一个排列式的所有的元素都不在原来的位置上,则称这个排列为错排。

 

HDOJ RPG的错排

Problem Description
今年暑假杭电ACM集训队第一次组成女生队,其中有一队叫RPG,但做为集训队成员之一的野骆驼竟然不知道RPG三个人具体是谁谁。RPG给他机会让他猜猜,第一次猜:R是公主,P是草儿,G是月野兔;第二次猜:R是草儿,P是月野兔,G是公主;第三次猜:R是草儿,P是公主,G是月野兔;......可怜的野骆驼第六次终于把RPG分清楚了。由于RPG的带动,做ACM的女生越来越多,我们的野骆驼想都知道她们,可现在有N多人,他要猜的次数可就多了,为了不为难野骆驼,女生们只要求他答对一半或以上就算过关,请问有多少组答案能使他顺利过关。

Input

输入的数据里有多个case,每个case包括一个n,代表有几个女生,(n<=25), n = 0输入结束。

Sample Input

1

2

0

Sample Output

1

1
 
  • 解题思路:

  求0到n/2的所有错排和注意到对于i个人的错排的时候,还应该在错排前面乘上一个C(n,i)代表选取i个人进行错排

 #include<stdio.h>
#include<math.h>
#define e exp(1.0)
__int64 ans[];
__int64 f[];
double p(int n)
{
int i;
double res=1.0;
for(i=;i<=n;i++)
res=res*i;
return res;
} __int64 C(int n,int r)
{
__int64 res=;
__int64 i;
for(i=;i<=r;i++)
{
res=res*(n-i+);
res=res/i;
}
return res;
}
void init()
{
int i,j;
for(i=;i<=;i++)
f[i]=(__int64)(p(i)/e+0.5); //注释1
ans[]=;
f[]=; for(i=;i<=;i++)
{
for(j=;j<=i/;j++)
ans[i]=ans[i]+f[j]*C(i,j);
}
} int main()
{
int n;
init();
while(scanf("%d",&n)!=EOF)
{
if(n==)
break;
printf("%I64d\n",ans[n]);
}
return ;
}

注释1:错排问题,对于n个元素,对其重新排列,使得恰好有m个元素在原来的位置的排列总数P(n,m)

定理:令f(n) = P(n,0),则f(n) = (n-1)*f(n-1) + (n-1)*f(n-2)

定理:P(n,m) = (n!/m!)(1 - 1/1! + 1/2! -1/3! + …+ (-1)^(n-m) * 1/((n-m)!))

当m=0时,f(n) = P(n,0) = n! * (1 - 1/1! + 1/2! - 1/3! + … + ((-1)^n)/n! )

由级数知识化简为 f(n) = (n!/e +0.5) 整数向下取整

ACM -- 算法小结(二)错排公式的应用的更多相关文章

  1. HDU 2048:神、上帝以及老天爷(错排公式,递推)

    神.上帝以及老天爷 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. HDU 1465 不容易系列之一 (错排公式+容斥)

    题目链接 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好"一件"事情尚且不易,若想永远成功而总从不失败,那更是难上 ...

  3. HDU——2068RPG的错排(错排公式)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  4. HDU 2068 RPG的错排(错排公式 + 具体解释)

    RPG的错排 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  5. 【BZOJ】4517 [Sdoi2016]排列计数(数学+错排公式)

    题目 传送门:QWQ 分析 $ O(nlogn) $预处理出阶乘和阶乘的逆元,然后求组合数就成了$O(1)$了. 最后再套上错排公式:$ \huge d[i]=(i-1) \times (d[i-1] ...

  6. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  7. hdu 4535(排列组合之错排公式)

    吉哥系列故事——礼尚往来 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  8. HDU——1465不容易系列之一(错排公式)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  9. HDU 1465(错排公式)

    不容易系列之一 题意: 一个人要寄n个信封,结果装错了.信纸的编号为1到n,信封的编号为1到n,信纸的编号不能和信封的编号一样,全都不能一样. 思路:错排公式. D(n)表示n件信封装错的所有的情况. ...

  10. 错排公式 全排列函数 next_permitation(a,a+n)

    不容易系列之一 错排:3件东西分别装进3个不同的特定的袋子,如果刚好一个都没有装对,就叫做错排! 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 做好“一件”事情尚且不易,若想永远 ...

随机推荐

  1. JS设计模式——1.富有表现力的JS

    创建支持链式调用的类(构造函数+原型) Function.prototype.method = function(name, fn){ this.prototype[name] = fn; retur ...

  2. Attention-over-Attention Neural Networks for Reading Comprehension论文总结

    Attention-over-Attention Neural Networks for Reading Comprehension 论文地址:https://arxiv.org/pdf/1607.0 ...

  3. 安装Docker-ce

    Docker Engine改为Docker CE(社区版) 它包含了CLI客户端.后台进程/服务以及API.用户像以前以同样的方式获取.Docker Data Center改为Docker EE(企业 ...

  4. Linux下文件目录权限和对应命令的总结

    Linux下的权限有rwx三种,分别对应读,写,执行三种,在对文件和目录时,分别是下列含义: 对应权限的命令为: 文件: r-- cat, more, head, tail w-- echo, vi ...

  5. makefile初步制作,arm-linux- (gcc/ld/objcopy/objdump)详解【转】

    转自:http://www.cnblogs.com/lifexy/p/7065175.html 在linux中输入vi Makefile 来实现创建Makefile文件 注意:命令行前必须加TAB键 ...

  6. [转载]FFmpeg完美入门[3] - FFmpeg功能及使用说明

    1 ffplay对多媒体的支持能力验证 一.视频3gp 177X144 支持播放,在windows下播放正常,但是在linux下面偶有BUG 如果发现画面无法显示而声音可以播放的情况下可以试着切换全屏 ...

  7. 基于Token的授权(with srping mvc)

    @Override public void doFilter(ServletRequest sr, ServletResponse sr1, FilterChain fc) throws IOExce ...

  8. Linux下文件特殊权限

    SUIDSUID表示在所有者的位置上出现了s在一个命令的所有者的权限上如果出现了s,当其他人在执行该命令的时候将具有所有者的权限.SUID权限仅对二进制文件有效 SGID表示在组的位置上出现了s如果一 ...

  9. html禁止浏览器默认行为,让页面更像应用。

    在html或body行内写入:oncontextmenu="return false" ondragstart='return false;' onselectstart=&quo ...

  10. bzoj 1855 dp + 单调队列优化

    思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...