首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点。若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值。这样跑最短路是$O(m^2\log m)$的。

用类似网络流中补流的方法,一条边拆成的两个点之间连权值为边的原权值的边(第一种边)。对于一个点,将所有以它为起点的边排序,将相邻的两条边对应的点连边,小的往大的连权值为两条边的原权值差的边,大的往小的连权值为0的边(第二种边)。建超级源汇,最短路即可。

若流了第一种边则代表最短路中有这条边,若流了第二种边则代表换边。复杂度$O(m\log m)$

 #include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
const ll inf=1e15;
ll dis[N];
bool b[N];
int n,m,u,v,w,cnt,nd,q[N],h[N],to[N],nxt[N],val[N];
struct E{ int u,v,w; }a[N];
vector<int>V[N];
bool cmp(int x,int y){ return a[x].w<a[y].w; }
struct P{ int x; ll d; };
bool operator <(const P &a,const P &b){ return a.d>b.d; }
priority_queue<P>Q;
void add(int u,int v,int w){ to[++nd]=v; val[nd]=w; nxt[nd]=h[u]; h[u]=nd; } int main(){
scanf("%d%d",&n,&m);
rep(i,,m){
scanf("%d%d%d",&u,&v,&w);
a[++cnt]=(E){u,v,w}; a[++cnt]=(E){v,u,w};
add(cnt,cnt-,w); add(cnt-,cnt,w);
V[u].push_back(cnt-); V[v].push_back(cnt);
}
rep(i,,n){
int tot=;
rep(j,,(int)V[i].size()-) q[++tot]=V[i][j];
if (!tot) continue;
sort(q+,q+tot+,cmp);
rep(j,,tot-) add(q[j],q[j+],a[q[j+]].w-a[q[j]].w),add(q[j+],q[j],);
}
int S=cnt+,T=cnt+;
rep(i,,cnt){
if (a[i].u==) add(S,i,a[i].w);
if (a[i].v==n) add(i,T,a[i].w);
}
rep(i,,T) dis[i]=inf; Q.push((P){S,}); dis[S]=;
while (!Q.empty()){
int x=Q.top().x; Q.pop();
if (b[x]) continue;
b[x]=;
For(i,x) if (dis[k=to[i]]>dis[x]+val[i])
dis[k]=dis[x]+val[i],Q.push((P){k,dis[k]});
}
printf("%lld\n",dis[T]);
return ;
}

[BZOJ4289][PA2012]TAX(最短路)的更多相关文章

  1. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  2. 【BZOJ-4289】Tax 最短路 + 技巧建图

    4289: PA2012 Tax Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 168  Solved: 69[Submit][Status][Dis ...

  3. BZOJ4289 : PA2012 Tax

    一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...

  4. [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

  5. bzoj4289 PA2012 Tax——点边转化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 好巧妙的转化!感觉自己难以想出来... 参考了博客:https://blog.csdn ...

  6. 【BZOJ-4289】Tax 最短路 + 技巧建图(化边为点)

    题意 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权N<=10 ...

  7. BZOJ 4289: PA2012 Tax(最短路)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 240[Submit][Status][Discuss] Descriptio ...

  8. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  9. 【PA2012】【BZOJ4289】Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值.求从起点1到点N的最小代价. 起点的代价是离开起点的边的边权.终点的代价是进入终点的边的 ...

随机推荐

  1. NB二人组(一)----堆排序

    堆排序前传--树与二叉树简介 特殊且常用的树--二叉树  两种特殊的二叉树 二叉树的存储方式 二叉树小结 堆排序 堆这个玩意....... 堆排序过程: 构造堆: 堆排序的算法程序(程序需配合着下图理 ...

  2. c语言学习笔记.条件编译.#if,#ifdef,if的区别

    最近遇到了,以此做个记录. 条件编译 是C预处理部分的内容. 其判断语句包括 #if  #else if  #else 以及 #ifdef 和 #endif. 使用 #if (表达式) codes1. ...

  3. ogg数据初始化历程记录

    之前,源端数据表结构发生改变,不知道前面的同事是怎么搞得(生成的数据定义文件不对,还是没有把进程启动),造成进程停止20天,然后重启复制进程,对比源端和目标端数据有差异(总共差10000多条数据),问 ...

  4. Codeforces Round #434 (Div. 2)

    Codeforces Round #434 (Div. 2) 刚好时间对得上,就去打了一场cf,发现自己的代码正确度有待提高. A. k-rounding 题目描述:给定两个整数\(n, k\),求一 ...

  5. Nginx - 限制并发、限制访问速率、限制流量

    1. 前言 本文针对 Nginx 的三个模块进行配置,并证实各自的功能特点: (1)limit_conn_zone 模块  - 限制同一 IP 地址并发连接数: (2)limit_request 模块 ...

  6. Percona XtraDB Cluster(PXC) Mysql 集群

    Percona XtraDB Cluster(PXC)   ---原理介绍篇         目录 一.简介 1 二.优缺点 2 三.区别/局限性 3 四. PXC复制原理 4 五. 服务解释 5   ...

  7. POJ 2186 Popular cows(Kosaraju+强联通分量模板)

    题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为 ...

  8. HTML 禁止显示input默认提示信息

    看问题 html代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  9. hive的窗口函数cume_dist、fercent_rank

    一.cume_dist 这两个序列分析函数不是很常用,这里也介绍一下.注意: 序列函数不支持WINDOW子句. 数据准备: d1,user1, d1,user2, d1,user3, d2,user4 ...

  10. Hilite代码高亮工具

    在用<有道云笔记>等软件时候,软件自身不提供代码高亮功能,对于需要记录code的学习笔记,视觉效果丢失. 有很多在线工具能用来代码高亮,比如oschina就有代码高亮页面用于着色. 但是我 ...