[BZOJ4289][PA2012]TAX(最短路)
首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点。若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值。这样跑最短路是$O(m^2\log m)$的。
用类似网络流中补流的方法,一条边拆成的两个点之间连权值为边的原权值的边(第一种边)。对于一个点,将所有以它为起点的边排序,将相邻的两条边对应的点连边,小的往大的连权值为两条边的原权值差的边,大的往小的连权值为0的边(第二种边)。建超级源汇,最短路即可。
若流了第一种边则代表最短路中有这条边,若流了第二种边则代表换边。复杂度$O(m\log m)$
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
const ll inf=1e15;
ll dis[N];
bool b[N];
int n,m,u,v,w,cnt,nd,q[N],h[N],to[N],nxt[N],val[N];
struct E{ int u,v,w; }a[N];
vector<int>V[N];
bool cmp(int x,int y){ return a[x].w<a[y].w; }
struct P{ int x; ll d; };
bool operator <(const P &a,const P &b){ return a.d>b.d; }
priority_queue<P>Q;
void add(int u,int v,int w){ to[++nd]=v; val[nd]=w; nxt[nd]=h[u]; h[u]=nd; } int main(){
scanf("%d%d",&n,&m);
rep(i,,m){
scanf("%d%d%d",&u,&v,&w);
a[++cnt]=(E){u,v,w}; a[++cnt]=(E){v,u,w};
add(cnt,cnt-,w); add(cnt-,cnt,w);
V[u].push_back(cnt-); V[v].push_back(cnt);
}
rep(i,,n){
int tot=;
rep(j,,(int)V[i].size()-) q[++tot]=V[i][j];
if (!tot) continue;
sort(q+,q+tot+,cmp);
rep(j,,tot-) add(q[j],q[j+],a[q[j+]].w-a[q[j]].w),add(q[j+],q[j],);
}
int S=cnt+,T=cnt+;
rep(i,,cnt){
if (a[i].u==) add(S,i,a[i].w);
if (a[i].v==n) add(i,T,a[i].w);
}
rep(i,,T) dis[i]=inf; Q.push((P){S,}); dis[S]=;
while (!Q.empty()){
int x=Q.top().x; Q.pop();
if (b[x]) continue;
b[x]=;
For(i,x) if (dis[k=to[i]]>dis[x]+val[i])
dis[k]=dis[x]+val[i],Q.push((P){k,dis[k]});
}
printf("%lld\n",dis[T]);
return ;
}
[BZOJ4289][PA2012]TAX(最短路)的更多相关文章
- [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec Memo ...
- 【BZOJ-4289】Tax 最短路 + 技巧建图
4289: PA2012 Tax Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 168 Solved: 69[Submit][Status][Dis ...
- BZOJ4289 : PA2012 Tax
一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...
- [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- bzoj4289 PA2012 Tax——点边转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 好巧妙的转化!感觉自己难以想出来... 参考了博客:https://blog.csdn ...
- 【BZOJ-4289】Tax 最短路 + 技巧建图(化边为点)
题意 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权N<=10 ...
- BZOJ 4289: PA2012 Tax(最短路)
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 240[Submit][Status][Discuss] Descriptio ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
- 【PA2012】【BZOJ4289】Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值.求从起点1到点N的最小代价. 起点的代价是离开起点的边的边权.终点的代价是进入终点的边的 ...
随机推荐
- Vue 传递
今天刷了一遍Vue的API,做个小笔记 父子传递数据时,父组件里标记要传的数据,子组件里用props获取,子组件用$emit('func',args)发布事件,父组件用@func接收. 方法一 par ...
- Linux下用到数据库sqlite3
最近在Linux下用到数据库sqlite3,于是开始了该方面的学习. 0. 引言 我们这篇文章主要讲述了如何在C/C++语言中调用 sqlite 的函数接口来实现对数据库的管理, 包括创建数据库.创建 ...
- 64_m3
molequeue-doc-0.8.0-2.20161222giteb397e.fc26.no..> 05-Apr-2017 10:04 451570 molequeue-libs-0.8.0- ...
- linux用户修改用户shell
要拒绝系统用户登录,可以将其shell设置为/usr/sbin/nologin或者/bin/false # usermod -s /usr/sbin/nologin username 或者 # use ...
- unittest单元测试
unittest单元测试框架不仅可以适用于单元测试,还可以适用WEB自动化测试用例的开发与执行,该测试框架可组织执行测试用例,并且提供了丰富的断言方法,判断测试用例是否通过,最终生成测试结果.今天笔者 ...
- IEEEXtreme 10.0 - Food Truck
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme10.0 - Food Truck 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank.c ...
- php、mysql编译配置
与apache一起使用: Configure Command => './configure' '--prefix=/home/sujunjie/local/php' '--with-apx ...
- list 移除值
1. 移除基本类型值时,传入int 会以下标为依据移除 , 但传入Integer 对象时,则是移除对象为依据移除(即不受此对象代表的值相等的下标的影响) 都是只能移除一个值,(list 中有多个1时, ...
- 使用cp命令时候递归的创建目标目录
在使用cp命令拷贝文件的时候,有时候会遇到这样的场景: 源文件:/a/b/c/e.txt 目标地址:/mnt/a/b/c/e.txt 而/mnt/a/b/c这个目录结构还没有创建.拷贝的时候还要求目录 ...
- 表A中一条记录的两个字段都对应于表B的同一个字段 如何查询?SQL, thinkphp[5]
表 A=approval_order, B=admin, 表A中technician_username, salesman_username 都是id号,中文名保存在admin表的nickname ...