【期望DP】BZOJ2134- 单选错位
【题目大意】
有n道题,第i道题有ai个选项。一个人把所有的正确答案填到了后面一题上(特殊的,当i=n的时候填到1上),问他期望做对几道题?
【思路】
沙茶题……显然每道题的期望是独立的。
对于某道题,它做对的概率等于当前题目和下一题答案是一样的概率。考虑选项数较小的那一个,它和另一题答案相同的概率=1/另外一道题的选项。
所以dp[i]=1/max(a[i],a[i+1])
over~
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=+;
int a[MAXN];
double ans;
int n,A,B,C; void init()
{
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+);
for (int i=;i<=n;i++) a[i]=((ll)a[i-]*A+B)%;
for (int i=;i<=n;i++) a[i]=a[i]%C+;
} void solve()
{
ans=;
for (int i=;i<=n;i++)
{
double x=(double)a[i]*1.0,y=(double)a[i%n+]*1.0;
ans+=1.0/max(x,y);
}
printf("%.3f\n",ans);
} int main()
{
init();
solve();
return ;
}
【期望DP】BZOJ2134- 单选错位的更多相关文章
- bzoj2134单选错位
bzoj2134单选错位 题意: 试卷上n道选择题,每道分别有ai个选项.某人全做对了,但第i道题的答案写在了第i+1道题的位置,第n道题答案写在第1题的位置.求期望能对几道.n≤10000000 题 ...
- BZOJ2134: 单选错位(期望乱搞)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1101 Solved: 851[Submit][Status][Discuss] Descripti ...
- BZOJ2134——单选错位
1.题意:这就是说考试的时候抄串了一位能对几个(雾) 2.分析:这是一个期望问题,期望就是平均,E(a+b)=E(a)+E(b),所以我们直接算出每个点能对几个就好,那么就是1/max(a[i],a[ ...
- BZOJ2134: 单选错位
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2134 题解:因为每个答案之间是互不影响的,所以我们可以挨个计算. 假设当前在做 i 题目,如果 ...
- bzoj2134: 单选错位(trie)
预处理前后缀异或和,用trie得到前后缀最大答案,枚举中间点把左右两边加起来就是当前中间点的最大答案了...这个操作没见过,比较有意思,记录一下 #include<iostream> #i ...
- BZOJ_2134_单选错位——期望DP
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...
- 【BZOJ】2134: 单选错位 期望DP
[题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...
- BZOJ 2134: 单选错位( 期望 )
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...
- P1297 [国家集训队]单选错位(期望)
P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可 ...
随机推荐
- 使用inline-block,使前面img,后面空div居中显示在一行后,导致当div中有内容时,div下移问题
.pro_li img,.pro_sm{display: inline-block; *display:inline;*zoom:1;vertical-align: middle ;} 解决方法:使用 ...
- 使用webpack配置react并添加到flask应用
学习react,配置是很痛苦的一关,虽然现在有了create-react-app这样方便的工具,但是必须要自己配置一遍,才能更好地进行项目开发. 首先要明确一个概念:react的文件必须经过编译才能被 ...
- Shader -> Photoshop图层混合模式计算公式大全
Photoshop图层混合模式计算公式大全 混合模式可以将两个图层的色彩值紧密结合在一起,从而创造出大量的效果,在这些效果的背后实际是一些简单的数学公式在起作用. 下面是photoshop cs2中所 ...
- 使用wifite破解路由器密码
使用wifite破解路由器密码 发表于 2016-02-06 | 分类于 wifite | 暂无评论 | 10次阅读 简介 wifite是一款自动化wep.wpa破解工具,不支持w ...
- Coursera在线学习---第二节.Octave学习
1)两个矩阵相乘 A*B 2)两个矩阵元素位相乘(A.B矩阵中对应位置的元素相乘) A.*B 3)矩阵A的元素进行平方 A.^2 4)向量或矩阵中的元素求倒数 1./V 或 1./A 5) ...
- 服务器部署之nginx的配置
nginx可作为Web和 反向代理 服务器,在高连接并发的情况下,Nginx是Apache服务器不错的替代品.下面记录一下自己对nginx的配置和使用. nginx的安装 环境:oracle-linu ...
- INIT_WORK
借助runtime pm,在需要使用模块时,增加引用计数(可调用pm_runtime_get),不需要使用时,减少引用计数(可调用pm_runtime_put). 1.INIT_WORK(struct ...
- c# 使用httpclient
using System; using System.Collections.Generic; using System.Globalization; using System.Linq; using ...
- openjudge-NOI 2.6基本算法之动态规划 专题题解目录
1.1759 最长上升子序列 2.1768 最大子矩阵 3.1775 采药 4.1808 公共子序列 5.1944 吃糖果 6.1996 登山 7.2000 最长公共子上升序列 8.2718 移动路线 ...
- centos7安装ssh服务
1.查看是否安装了相关软件: rpm -qa|grep -E "openssh" 显示结果含有以下三个软件,则表示已经安装,否则需要安装缺失的软件 openssh-ldap-6.6 ...