D. Turtles

Time Limit: 20 Sec  Memory Limit: 256 MB

题目连接

http://codeforces.com/contest/547/problem/B

Description

You've got a table of size n × m. We'll consider the table rows numbered from top to bottom 1 through n, and the columns numbered from left to right 1 through m. Then we'll denote the cell in row x and column y as (x, y).

Initially cell (1, 1) contains two similar turtles. Both turtles want to get to cell (n, m). Some cells of the table have obstacles but it is guaranteed that there aren't any obstacles in the upper left and lower right corner. A turtle (one or the other) can go from cell (x, y) to one of two cells (x + 1, y) and (x, y + 1), as long as the required cell doesn't contain an obstacle. The turtles have had an argument so they don't want to have any chance of meeting each other along the way. Help them find the number of ways in which they can go from cell (1, 1) to cell (n, m).

More formally, find the number of pairs of non-intersecting ways from cell (1, 1) to cell (n, m) modulo 1000000007 (109 + 7). Two ways are called non-intersecting if they have exactly two common points — the starting point and the final point.

Input

The first line contains two integers n, m (2 ≤ n, m ≤ 3000). Each of the following n lines contains m characters describing the table. The empty cells are marked by characters ".", the cells with obstacles are marked by "#".

It is guaranteed that the upper left and the lower right cells are empty.

Output

In a single line print a single integer — the number of pairs of non-intersecting paths from cell (1, 1) to cell (n, m) modulo 1000000007 (109 + 7).

Sample Input

4 5
.....
.###.
.###.
.....

Sample Output

1

HINT

题意

给定一张有坏点的网格图,求左上角走到右下角的两条不相交路径的方案数

题解:

考虑如果只有一条路该怎么做
显然 DP 就行了
那么我们定义 Calc ( x 1 , y 1 , x 2 , y 2 ) 为从 ( x 1 , y 1 ) 走到 ( x 2 , y 2 ) 的方案数
如果不考虑相交,那么答案就是 Calc (2,1, n , m  1) * Calc (1, 2, n  1, m )
现在考虑相交后,对于一种相交的方案,我们选择最后一个相交的点,将两人从这个点往后的目标反
转一下,这样可以映射到一条从 (2,1) 走到 ( n  1, m ) 的路径和一条从 (1, 2) 走到 ( n , m  1) 的路径
这样我们就将原先每种不合法的方案和反转后的每种方案建立起了映射
故答案为 Calc (2,1, n , m  1) * Calc (1, 2, n  1, m )  Calc (2,1, n  1, m ) * Calc (1, 2, n , m  1)
时间复杂度  ( nm ) ,可以拿到 100 分

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 200001
#define mod 1000000007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** int n,m;
char s[][];
ll dp[][];
ll solve(int x,int y,int xx,int yy)
{
if(s[x][y]=='#')
return ;
memset(dp,,sizeof(dp));
dp[x][y]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]=='#')
continue;
dp[i][j]+=dp[i-][j]+dp[i][j-];
dp[i][j]%=mod;
}
}
return dp[xx][yy];
}
int main()
{
//test;
n=read(),m=read();
for(int i=;i<=n;i++)
scanf("%s",s[i]+);
ll tmp=solve(,,n-,m)*solve(,,n,m-)-solve(,,n,m-)*solve(,,n-,m);
printf("%d\n",(tmp%mod+mod)%mod);
}

Codeforces Round #202 (Div. 1) D. Turtles DP的更多相关文章

  1. Codeforces Round #202 (Div. 2)

    第一题水题但是wa了一发,排队记录下收到的25,50,100,看能不能找零,要注意100可以找25*3 复杂度O(n) 第二题贪心,先找出最小的花费,然后就能得出最长的位数,然后循环对每个位上的数看能 ...

  2. Codeforces Round #131 (Div. 1) B. Numbers dp

    题目链接: http://codeforces.com/problemset/problem/213/B B. Numbers time limit per test 2 secondsmemory ...

  3. Codeforces Round #131 (Div. 2) B. Hometask dp

    题目链接: http://codeforces.com/problemset/problem/214/B Hometask time limit per test:2 secondsmemory li ...

  4. Codeforces Round #276 (Div. 1) D. Kindergarten dp

    D. Kindergarten Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/proble ...

  5. Codeforces Round #260 (Div. 1) A - Boredom DP

    A. Boredom Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/455/problem/A ...

  6. Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS

    题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...

  7. Codeforces Round #539 (Div. 2) 异或 + dp

    https://codeforces.com/contest/1113/problem/C 题意 一个n个数字的数组a[],求有多少对l,r满足\(sum[l,mid]=sum[mid+1,r]\), ...

  8. Codeforces Round #374 (Div. 2) C. Journey DP

    C. Journey 题目连接: http://codeforces.com/contest/721/problem/C Description Recently Irina arrived to o ...

  9. Codeforces Round #202 (Div. 1) A. Mafia 贪心

    A. Mafia Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/348/problem/A D ...

随机推荐

  1. 安装JDK环境变量的配置

    设置环境变量 在java中需要设置三个环境变量(1.5之后不用再设置classpath了,但是个人强烈建议继续设置以保证向下兼容问题) JDK安装完成之后我们用来设置环境变量:右击”我的电脑“,选择” ...

  2. 模型稳定度指标PSI与IV

    由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知.稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发 ...

  3. 多线程中的超时, 如Socket超时

    ; ,,, ->$port { print "-->$port\r"; #say "\r"; await Promise.anyof( Promis ...

  4. ThinkPHP的运行流程-1

    我在index\Lib\Action\目录下新建了一个ShowAction.class.php文件.ps:该目录是控制器的目录. 然后这个文件中继承了action这个类.代码如下: 1 2 3 4 5 ...

  5. caffe Python API 之Inference

    #以SSD的检测测试为例 def detetion(image_dir,weight,deploy,resolution=300): caffe.set_mode_gpu() net = caffe. ...

  6. ios 不支持iframe 解决方案

    在iframe外层在包一层,通过appendChild()把内容增加到容器中,完整代码如下: @section Css { <link href="@ViewHelper.Conten ...

  7. pandas安装及使用

    一. 安装pandas1. Anaconda        安装pandas.Python和SciPy最简单的方式是用Anaconda.Anaconda是关于Python数据分析和科学计算的分发包.2 ...

  8. NSBundle pathForResource is NULL 取不到值

    错误提示: Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** -[NSURL i ...

  9. linux抓包工具tcpdump基本使用

    tcpdump 是一款灵活.功能强大的抓包工具,能有效地帮助排查网络故障问题. tcpdump 是一个命令行实用工具,允许你抓取和分析经过系统的流量数据包.它通常被用作于网络故障分析工具以及安全工具. ...

  10. 进程自我保护 适用于WIN7 X64

    //进程自我保护,注意只有X64 WIN7可用 #include <ntddk.h> #define PROCESS_TERMINATE 1 typedef struct _LDR_DAT ...