HashMap结构及使用
HashMap的数据结构
HashMap主要是用数组来存储数据的,我们都知道它会对key进行哈希运算,哈系运算会有重复的哈希值,对于哈希值的冲突,HashMap采用链表来解决的。在HashMap里有这样的一句属性声明:
transient Entry[] table;
Entry就是HashMap存储数据所用的类,它拥有的属性如下
final K key;
V value;
final int hash;
Entry<K,V> next;
看到next了吗?next就是为了哈希冲突而存在的。比如通过哈希运算,一个新元素应该在数组的第10个位置,但是第10个位置已经有Entry,那么好吧,将新加的元素也放到第10个位置,将第10个位置的原有Entry赋值给当前新加的 Entry的next属性。数组存储的是链表,链表是为了解决哈希冲突的,这一点要注意。
几个关键的属性
存储数据的数组
transient Entry[] table; 这个上面已经讲到了
默认容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
默认加载因子,加载因子是一个比例,当HashMap的数据大小>=容量*加载因子时,HashMap会将容量扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;
当实际数据大小超过threshold时,HashMap会将容量扩容,threshold=容量*加载因子
int threshold;
加载因子
final float loadFactor;
HashMap的初始过程
构造函数1
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +loadFactor); // Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1; this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
table = new Entry[capacity];
init();
}
重点注意这里
while (capacity < initialCapacity)
capacity <<= 1;
capacity才是初始容量,而不是initialCapacity,这个要特别注意,如果执行new HashMap(9,0.75);那么HashMap的初始容量是16,而不是9,想想为什么吧。
构造函数2
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
构造函数3,全部都是默认值
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}
构造函数4
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
如何哈希
HashMap并不是直接将对象的hashcode作为哈希值的,而是要把key的hashcode作一些运算以得到最终的哈希值,并且得到的哈希值也不是在数组中的位置哦,无论是get还是put还是别的方法,计算哈希值都是这一句:
int hash = hash(key.hashCode());
hash函数如下:
static int hash(int h) {
return useNewHash ? newHash(h) : oldHash(h);
}
useNewHash声明如下:
private static final boolean useNewHash;
static { useNewHash = false; }
这说明useNewHash其实一直为false且不可改变的,hash函数里对 useNewHash的判断真是多余的。
private static int oldHash(int h) {
h += ~(h << 9);
h ^= (h >>> 14);
h += (h << 4);
h ^= (h >>> 10);
return h;
} private static int newHash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
其实HashMap的哈希函数会一直都是oldHash。
如果确定数据的位置
看下面两行
int hash = hash(k.hashCode());
int i = indexFor(hash, table.length);
第一行,上面讲过了,是得到哈希值,第二行,则是根据哈希指计算元素在数组中的位置了,位置的计算是将哈希值和数组长度按位与运算。
static int indexFor(int h, int length) {
return h & (length-1);
}
put方法到底作了什么?
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
如果key为NULL,则是单独处理的,看看putForNullKey方法:
private V putForNullKey(V value) {
int hash = hash(NULL_KEY.hashCode());
int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) {
if (e.key == NULL_KEY) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
} modCount++;
addEntry(hash, (K) NULL_KEY, value, i);
return null;
}
NULL_KEY的声明:
static final Object NULL_KEY = new Object();
这一段代码是处理哈希冲突的,就是说,在数组某个位置的对象可能并不是唯一的,它是一个链表结构,根据哈希值找到链表后,还要对链表遍历,找出key相等的对象,替换它,并且返回旧的值。
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
if (e.key == NULL_KEY) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
如果遍历完了该位置的链表都没有找到有key相等的,那么将当前对象增加到链表里面去
modCount++;
addEntry(hash, (K) NULL_KEY, value, i);
return null;
且看看addEntry方法
void addEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
if (size++ >= threshold)
resize(2 * table.length);
}
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);新建一个Entry对象,并放在当前位置的Entry链表的头部,看看下面的 Entry构造函数就知道了,注意红色部分。
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
如何扩容?
当put一个元素时,如果达到了容量限制,HashMap就会扩容,新的容量永远是原来的2倍。
上面的put方法里有这样的一段:
if (size++ >= threshold)
resize(2 * table.length);
这是扩容判断,要注意,并不是数据尺寸达到HashMap的最大容量时才扩容,而是达到 threshold指定的值时就开始扩容, threshold=最大容量*加载因子。 看看resize方法
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
} Entry[] newTable = new Entry[newCapacity];
transfer(newTable);
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
重点看看红色部分的 transfer方法
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
tranfer方法将所有的元素重新哈希,因为新的容量变大,所以每个元素的哈希值和位置都是不一样的。
正确的使用HashMap
1:不要在并发场景中使用HashMap
HashMap是线程不安全的,如果被多个线程共享的操作,将会引发不可预知的问题,据sun的说法,在扩容时,会引起链表的闭环,在get元素时,就会无限循环,后果是cpu 100%。
看看get方法的红色部分
public V get(Object key) {
if (key == null)
return getForNullKey();
int hash = hash(key.hashCode());
for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;
}
return null;
}
2:如果数据大小是固定的,那么最好给HashMap设定一个合理的容量值
根据上面的分析,HashMap的初始默认容量是16,默认加载因子是0.75,也就是说,如果采用HashMap的默认构造函数,当增加数据时,数据实际容量超过16*0.75=12时,HashMap就扩容,扩容带来一系列的运算,新建一个是原来容量2倍的数组,对原有元素全部重新哈希,如果你的数据有几千几万个,而用默认的HashMap构造函数,那结果是非常悲剧的,因为HashMap不断扩容,不断哈希,在使用HashMap的场景里,不会是多个线程共享一个HashMap,除非对HashMap包装并同步,由此产生的内存开销和cpu开销在某些情况下可能是致命的。
转自:http://www.java3z.com/cwbwebhome/article/article8/81388.html?id=3973
HashMap结构及使用的更多相关文章
- HashMap 源码解析
HashMap简介: HashMap在日常的开发中应用的非常之广泛,它是基于Hash表,实现了Map接口,以键值对(key-value)形式进行数据存储,HashMap在数据结构上使用的是数组+链表. ...
- java.util.HashMap源码分析
在java jdk8中对HashMap的源码进行了优化,在jdk7中,HashMap处理“碰撞”的时候,都是采用链表来存储,当碰撞的结点很多时,查询时间是O(n). 在jdk8中,HashMap处理“ ...
- 多线程下HashMap的死循环是如何产生的
前言 HashMap不是线程安全的,如果需要在多线程环境中使用Map,那么我们可以使用ConcurrentHashmap. 1.举例说明: package com.test; import java. ...
- java 8 Hashmap深入解析 —— put get 方法源码
每个java程序员都知道,HashMap是java中最重要的集合类之一,也是找工作面试中非常常见的考点,因为HashMap的实现本身确实蕴含了很多精妙的代码设计. 对于普通的程序员,可能仅仅能说出Ha ...
- HashMap 学习笔记
先摆上JDK1.8中HashMap的类注释:我翻译了一下 /** * Hash table based implementation of the <tt>Map</tt> i ...
- JVM、GC与HashMap
阿里巴巴突然来了个面试邀请电话,问了些java底层的东西,不知所措,所以专门花了些时间做了下学习,顺便记录下,好记性不如烂笔头. 一.对JAVA的垃圾回收机制(GC)的理解 不同于C/C++需要手工释 ...
- 【JDK1.8】JDK1.8集合源码阅读——HashMap
一.前言 笔者之前看过一篇关于jdk1.8的HashMap源码分析,作者对里面的解读很到位,将代码里关键的地方都说了一遍,值得推荐.笔者也会顺着他的顺序来阅读一遍,除了基础的方法外,添加了其他补充内容 ...
- HashMap源码解析(JDK1.8)
package java.util; import sun.misc.SharedSecrets; import java.io.IOException; import java.io.Invalid ...
- jdk源码阅读笔记-HashMap
文章出处:[noblogs-it技术博客网站]的博客:jdk1.8源码分析 在Java语言中使用的最多的数据结构大概右两种,第一种是数组,比如Array,ArrayList,第二种链表,比如Array ...
随机推荐
- Ubuntu之镜像iso安装系统
ubuntu的安装 官网下载iso文件,网址:http://releases.ubuntu.com/16.04.4/, 选择:ubuntu-16.04.4-server-amd64.iso: 下载完毕 ...
- [004] last_k_node
[Description] find the k-th node from the last node of single linked list. e.g. Linked-list: 1-2-3-4 ...
- appium===常用方法介绍,元素定位
https://testerhome.com/topics/3711 元素定位方法: find_element_by_android_uiautomator ,使用uiautomator定位,后面参数 ...
- hdu 1847(SG函数,巴什博弈)
Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- 简单优化:Zipalign
Android SDK中包含一个“zipalign”的工具,它能够对打包的应用程序进行优化.在你的应用程序上运行zipalign,使得在运行时Android与应用程序间的交互更加有效率.因此,这种方式 ...
- 实现优先级队列 --heapq模块
以给定的优先级对元素进行排序,每次pop删除优先级最高的 # coding=utf-8 # example.py # # Example of a priority queue import heap ...
- [实战]MVC5+EF6+MySql企业网盘实战(22)——图片列表
写在前面 实现逻辑是:单击图片节点,加载所有的当前用户之前上传的图片,分页,按时间倒序加载. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MyS ...
- Failed to lookup view 'error'
这个问题在npm run dev进行本地开发时,没有问题.但是在npm run build后,生产服务器上部署时出现问题. 我对本地的路径排查,发现写的没有问题 所以我去了生产的文件夹看路径 我去了s ...
- poj1040 Transportation(DFS)
题目链接 http://poj.org/problem?id=1040 题意 城市A,B之间有m+1个火车站,第一站A站的编号为0,最后一站B站的编号为m,火车最多可以乘坐n人.火车票的票价为票上终点 ...
- Window 下一台机器配置三个Tomcat实例
下面我们把配置的详细过程写在下面,以供参考:(此例以配置三个Tomcat为例) 1. 下载apache-tomcat-8.0.63,下载下来的文件为apache-tomcat-8.0.63.zip. ...