Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7795   Accepted: 4136

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

 
题解:
f[i][j]表示i到j的最大括号匹配数
 
#include <iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<deque>
#include<algorithm>
#include<string>
#include<stack>
#include<cmath>
using namespace std;
char ch[];
int dp[][];
int n;
bool ok(int x,int y)
{
if (ch[x]=='(' && ch[y]==')') return ;
if (ch[x]=='[' && ch[y]==']') return ;
return ;
} int main()
{
while(~scanf("%s",&ch))
{
if (ch[]=='e') break;
n=strlen(ch);
memset(dp,,sizeof(dp));
// for(int i=0;i<n;i++)
// for(int j=i+1;j<n;j++) 正就是不对的
for(int i=n-;i>=;i--)
for(int j=i+;j<n;j++)
{
if (ok(i,j)) dp[i][j]=max(dp[i][j],dp[i+][j-]+);
for(int k=i;k<=j;k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k][j]); }
printf("%d\n",dp[][n-]); }
return ;
}

Poj 2955 brackets(区间dp)的更多相关文章

  1. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  2. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  3. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  4. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  9. A - Brackets POJ - 2955 (区间DP模板题)

    题目链接:https://cn.vjudge.net/contest/276243#problem/A 题目大意:给你一个字符串,让你求出字符串的最长匹配子串. 具体思路:三个for循环暴力,对于一个 ...

  10. POJ 2955 Brackets 区间合并

    输出一个串里面能匹配的括号数 状态转移方程: if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']')             dp ...

随机推荐

  1. 浅谈WLAN干扰与抗干扰技术

    一. 无线干扰的分类和来源 无线干扰按照类型可划分为WLAN干扰和非WLAN干扰.WLAN干扰是指干扰源发送的RF信号也符合802.11标准,除此之外都是非WLAN干扰.对WLAN干扰,可进一步按照频 ...

  2. hdfs启动后进入safe mode,Problem connecting to server

    原创文章:http://blog.csdn.net/renfengjun/article/details/25320043 DN中日志如下: 2017-06-17 06:35:59,242 WARN ...

  3. Swoole学习(一)了解一下Swoole的强大并在Centos安装Swoole及PHP扩展开启

    Swoole是面向生产环境的 PHP 异步网络通信引擎,官网:https://www.swoole.com/ 使 PHP 开发人员可以编写高性能的异步并发 TCP.UDP.Unix Socket.HT ...

  4. GIT使用—创建并使用远程版本库

    远程版本库 (1)创建一个裸版本库 [root@localhost tmp]# git init fluff2 Initialized empty Git repository in /tmp/flu ...

  5. 如何用纯 CSS 创作一个跳动的字母 i

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/pZbrpJ 可交互视频 ...

  6. Git笔记之初识vi编辑器

    1.vi编辑器 如同Windows下的记事本,vi编辑器是Linux下的标配,通过它我们可以创建.编辑文件.它是一个随系统一起安装的文本编辑软件. vi编辑器提供了3种模式,分别是命令模式.插入模式. ...

  7. win10下搭建jz2440v3(arm s3c2440)开发及gdb调试环境【转】

    本文转载自:https://blog.csdn.net/newjay03/article/details/72835758 本来打算完全在Ubuntu下开发的,但是水平有限,没有在Ubuntu下找到合 ...

  8. [BZOJ4003]城池攻占

    Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖, ...

  9. IntelliJ IDEA 开发git多模块项目

    1.clone主项目 填写主仓库地址 2.在项目根目录,初始化子模块,并clone源码 git submodule init git submodule update 3.定位到各个子模块根目录,并切 ...

  10. detectron——test 错误集锦

    一.测试错误,运行如下代码 python2 tools/test_net.py --cfg experiments/e2e_faster_rcnn_resnet--FPN_pascal2007.yam ...