51Nod 1554 欧姆诺姆和项链 (KMP)
题意:中文题。
析:首先要使用KMP的失配函数 f ,对于长度为 i 的串,如果存在循环节那么 i % (i-f[i]) == 0,循环节的长度就是 i - f[i] ,当然次数就是 i / (i-f[i]),对于这个题,如果恰好是一个循环节,也就是 i % (i-f[i]) == 0,那么这个串一定是 SSSSSS...SSS的形式,要想出现 k+1 个 A,1 个A,可以看作是 k 个 AB和另外一个A,当然 A 可能是空串,也可能不是,那么要一共出现 k 次,也就是AB中一共包含 i / (i-f[i]) / k 个S,还剩下 i / (i-f[i]) % k, 这些就是剩下的,也就是那多出一个A,可以为空,只要满足,i / (i-f[i]) / k 大于或者等于i / (i-f[i]) % k ,如果不是正好循环节,也就是 i % (i-f[i]) != 0,这样的话就是 SSSS....SST,一定有一个T,也就是S的前缀,也就是A,而且肯定不为空,那么有了A,B也就有了同样求出一个AB中含有多少个S,再用总数减去T,就是B,因为T不为空,所以只要满足 i / (i-f[i]) / k 大于 i / (i-f[i]) % k 。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 100;
const int mod = 7600;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r > 0 && r <= n && c > 0 && c <= m;
} char s[maxn];
char ans[maxn];
int f[maxn]; void getFail(){
f[0] = f[1] = 0;
ans[0] = '0';
for(int i = 1; i < n; ++i){
ans[i] = '0';
int j = f[i];
while(j && s[j] != s[i]) j = f[j];
f[i+1] = s[i] == s[j] ? j+1 : 0;
}
} int main(){
scanf("%d %d", &n, &m);
scanf("%s", s);
getFail();
for(int i = 1; i <= n; ++i){
int val = i / (i - f[i]);
if(i % (i-f[i])){
if(val / m > val % m) ans[i-1] = '1';
}
else if(val / m >= val % m) ans[i-1] = '1';
}
puts(ans);
return 0;
} /*
14 5
ababababababab
00000000011100 14 3
ababababababab
00000111000111 20 7
ababbbaaabbbaaaabbbb
20 2
abababababababaaabab
00011101111111100000
*/
51Nod 1554 欧姆诺姆和项链 (KMP)的更多相关文章
- 51nod 1554 欧姆诺姆和项链
有一天,欧姆诺姆发现了一串长度为n的宝石串,上面有五颜六色的宝石.他决定摘取前面若干个宝石来做成一个漂亮的项链. 他对漂亮的项链是这样定义的,现在有一条项链S,当S=A+B+A+B+A+...+A+B ...
- 51NOD 1554 欧姆诺姆和项链 巧妙利用KMP
请戳这里! #include<cstdio> #define N 1000100 char s[N]; int n,k,nxt[N],ans[N]; int main() { scanf( ...
- [codeforces] 526D [51nod] 1554 欧姆诺姆和项链
原题 KMP 方法一: 听说是ex-kmp--来自学姐 ex-kmp是处理两个串s和t之间,t的每一个后缀在s中的最长前缀的长度的一个算法. 它很像manacher(至少我和学姐这么认为),记录了一个 ...
- 51NOD欧姆诺姆和项链——KMP算法(非水题)
>>点击进入原题测试<< 思路:好久不见,今天要开始真正写题了.这个题之前我的理解有点问题,导致写了很久最终都是一直都只能过样例.需要注意的是输出中每一个“1”都是和别的输出相 ...
- 51nod 1554:欧姆诺姆和项链——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1554 题目: 有一天,欧姆诺姆发现了一串长度为n的宝石串,上面有五颜六色 ...
- 51nod 1548 欧姆诺姆和糖果 (制约关系优化枚举)
1548 欧姆诺姆和糖果 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 一天,欧姆诺诺姆来到了朋友家里,他发现了 ...
- 51nod——1548 欧姆诺姆和糖果
一开始以为是贪心,然后发现没法贪.暴力枚举肯定T,于是用约束关系优化: 假设wr >= wb, 第一种情况:wr >= sqrt (c), 则此时最多吃c / wr个r,且c / wr & ...
- 51nod1548 欧姆诺姆和糖果
思路: 只有兩種糖果,枚舉其中一種糖果的數量就可以得到一個可行解: 但總有一種糖果的數量是較少的,並且該數量小於sqrt(C): 簡單證明: 1.若有任一糖果的質量大於sqrt(C),則必定有一糖果的 ...
- 51nod 1554 KMP思维题
题目为中文,因而不再解释题意. 首先遵循如下设定可以有以下几个结论:1,首先谈论下KMP的一个特殊性质:对于某一个特立独行的字符串:例如ABCDEF,在建立有限状态自动机之后,都会有,所有元素的失配边 ...
随机推荐
- 记录关于ubuntu无线上网只能ping通5~7个数据包的问题
问题是这样的,我的笔记本(ubuntu desktop)连接上wifi后,信号很好,但是上网上不了,ping网关也不通,ping外网仅仅只有当笔记本刚刚连接上wifi的时候能ping通5至6个包,然后 ...
- 编译hostapd时,出现错误:/usr/bin/ld: cannot find -lnl
book@ubuntu:/work/project/wifi/04.hostapd/hostapd-2.0/hostapd$ make /usr/bin/ld: cannot find -lnl co ...
- canvas之画一条线段
var canvas=document.getElementById("canvas"); //设置绘图环境 var cxt=canvas.getContext('2d'); // ...
- 安装FFmpeg3.0.9
//静态版的 FFmpeg Static Builds release: 3.3.3 https://www.johnvansickle.com/ffmpeg/ ffmpeg-release-64 ...
- 【UVA】12100 Printer Queue(STL队列&优先队列)
题目 题目 分析 练习STL 代码 #include <bits/stdc++.h> using namespace std; int main() { int t; sc ...
- java中构造方法和方法super/this超类与子类中初始化顺序
java中构造方法和方法全面解析 我相信大多说人都对构造方法.方法不陌生,而且很了解,但我也相信有很多像我这样的没有一个很好很清晰很全面的认识,今天就把它整理如下,希望能给大家带来点方便与帮助,也希望 ...
- Python Twisted系列教程19:改变之前的想法
作者:dave@http://krondo.com/i-thought-i-wanted-it-but-i-changed-my-mind/ 译者: Cheng Luo 你可以从”第一部分 Twis ...
- mac下mysql5.7.18修改root密码
参考:http://blog.csdn.net/lijilong_/article/details/70991809 第一步:苹果->系统偏好设置->最下面点MySQL,关闭mysql服务 ...
- mac 上sed
mac上sed和liunx是不一样的,所以有些指令可能不通用,需要将mac上sed替换成gun的: Install Homebrew First, visit Homebrew homepage an ...
- 第7章 Ping程序和traceroute程序
Ping程序 ping程序编写的目的是为了测试另外一台主机是否可达.程序发送的是一份ICMP回显请求报文给目的主机,并等待ICMP回显应答. 一般的TCP/IP实现都在内核中直接支持ping服务器—— ...