51Nod 1554 欧姆诺姆和项链 (KMP)
题意:中文题。
析:首先要使用KMP的失配函数 f ,对于长度为 i 的串,如果存在循环节那么 i % (i-f[i]) == 0,循环节的长度就是 i - f[i] ,当然次数就是 i / (i-f[i]),对于这个题,如果恰好是一个循环节,也就是 i % (i-f[i]) == 0,那么这个串一定是 SSSSSS...SSS的形式,要想出现 k+1 个 A,1 个A,可以看作是 k 个 AB和另外一个A,当然 A 可能是空串,也可能不是,那么要一共出现 k 次,也就是AB中一共包含 i / (i-f[i]) / k 个S,还剩下 i / (i-f[i]) % k, 这些就是剩下的,也就是那多出一个A,可以为空,只要满足,i / (i-f[i]) / k 大于或者等于i / (i-f[i]) % k ,如果不是正好循环节,也就是 i % (i-f[i]) != 0,这样的话就是 SSSS....SST,一定有一个T,也就是S的前缀,也就是A,而且肯定不为空,那么有了A,B也就有了同样求出一个AB中含有多少个S,再用总数减去T,就是B,因为T不为空,所以只要满足 i / (i-f[i]) / k 大于 i / (i-f[i]) % k 。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 100;
const int mod = 7600;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r > 0 && r <= n && c > 0 && c <= m;
} char s[maxn];
char ans[maxn];
int f[maxn]; void getFail(){
f[0] = f[1] = 0;
ans[0] = '0';
for(int i = 1; i < n; ++i){
ans[i] = '0';
int j = f[i];
while(j && s[j] != s[i]) j = f[j];
f[i+1] = s[i] == s[j] ? j+1 : 0;
}
} int main(){
scanf("%d %d", &n, &m);
scanf("%s", s);
getFail();
for(int i = 1; i <= n; ++i){
int val = i / (i - f[i]);
if(i % (i-f[i])){
if(val / m > val % m) ans[i-1] = '1';
}
else if(val / m >= val % m) ans[i-1] = '1';
}
puts(ans);
return 0;
} /*
14 5
ababababababab
00000000011100 14 3
ababababababab
00000111000111 20 7
ababbbaaabbbaaaabbbb
20 2
abababababababaaabab
00011101111111100000
*/
51Nod 1554 欧姆诺姆和项链 (KMP)的更多相关文章
- 51nod 1554 欧姆诺姆和项链
有一天,欧姆诺姆发现了一串长度为n的宝石串,上面有五颜六色的宝石.他决定摘取前面若干个宝石来做成一个漂亮的项链. 他对漂亮的项链是这样定义的,现在有一条项链S,当S=A+B+A+B+A+...+A+B ...
- 51NOD 1554 欧姆诺姆和项链 巧妙利用KMP
请戳这里! #include<cstdio> #define N 1000100 char s[N]; int n,k,nxt[N],ans[N]; int main() { scanf( ...
- [codeforces] 526D [51nod] 1554 欧姆诺姆和项链
原题 KMP 方法一: 听说是ex-kmp--来自学姐 ex-kmp是处理两个串s和t之间,t的每一个后缀在s中的最长前缀的长度的一个算法. 它很像manacher(至少我和学姐这么认为),记录了一个 ...
- 51NOD欧姆诺姆和项链——KMP算法(非水题)
>>点击进入原题测试<< 思路:好久不见,今天要开始真正写题了.这个题之前我的理解有点问题,导致写了很久最终都是一直都只能过样例.需要注意的是输出中每一个“1”都是和别的输出相 ...
- 51nod 1554:欧姆诺姆和项链——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1554 题目: 有一天,欧姆诺姆发现了一串长度为n的宝石串,上面有五颜六色 ...
- 51nod 1548 欧姆诺姆和糖果 (制约关系优化枚举)
1548 欧姆诺姆和糖果 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 一天,欧姆诺诺姆来到了朋友家里,他发现了 ...
- 51nod——1548 欧姆诺姆和糖果
一开始以为是贪心,然后发现没法贪.暴力枚举肯定T,于是用约束关系优化: 假设wr >= wb, 第一种情况:wr >= sqrt (c), 则此时最多吃c / wr个r,且c / wr & ...
- 51nod1548 欧姆诺姆和糖果
思路: 只有兩種糖果,枚舉其中一種糖果的數量就可以得到一個可行解: 但總有一種糖果的數量是較少的,並且該數量小於sqrt(C): 簡單證明: 1.若有任一糖果的質量大於sqrt(C),則必定有一糖果的 ...
- 51nod 1554 KMP思维题
题目为中文,因而不再解释题意. 首先遵循如下设定可以有以下几个结论:1,首先谈论下KMP的一个特殊性质:对于某一个特立独行的字符串:例如ABCDEF,在建立有限状态自动机之后,都会有,所有元素的失配边 ...
随机推荐
- Linux下压缩与解压
转自:http://www.mike.org.cn/blog/index.php?load=read&id=218###pp=0 [在解压或压缩的时候,一般还使用-v选项来现实正在处理的文件信 ...
- XML的学习
XML是可扩展标记语言德意思,它和HTML一样都是标记语言(标签语言),不同之处在于XML可拓展,何为可拓展?在HTML中每个标签都有其特定的含义,我们不可以随便写一个标签并赋予其意义,而XML中就可 ...
- cloudera manager卸载流程
注意:卸载Cloudera Manager后,根据需要保留或者删除集群中的Hadoop数据.下面的命令没有删除Hadoop数据,可以在控制台的Hadoop 和MapReduce /配置/选项卡,查看H ...
- Java多线程面试问题集锦
参看:http://www.importnew.com/1428.html
- react组件生命
组件的生命周期主要由三个部分组成: Mounting:组件正在被插入DOM中 Updating:如果DOM需要更新,组件正在被重新渲染 Unmounting:组件从DOM中移除 React提供了方法, ...
- processlist中最哪些状态要引起关注
一般而言,我们在processlist结果中如果经常能看到某些SQL的话,至少可以说明这些SQL的频率很高,通常需要对这些SQL进行进一步优化. 今天我们要说的是,在processlist中,看到哪些 ...
- [z]单次遍历带权随机选取
http://www.gocalf.com/blog/weighted-random-selection.html 没事可以看看,这个博客里面很多文章不错
- 构建一个完整的DNS系统
人心不同 各如其面 如之奈何 如之奈何 ——引子 我们的目标很明了——构建一个具有根的.私有的DNS(Domain Name System). 这里不会陈述太多关于DNS与BIND的基础知识,如果 ...
- day08 跟着太白老师学python 文件操作
文件操作初识: 1. 文件路径 :d:/护士主妇空姐联系方式 (文件路径不要太过复杂,容易碰到转义字符的问题, 当碰到转义字符时,需要在前面+r,或者采用双斜杠(//)) 2. 编码方式 :utf- ...
- 数据库,使用Druid 加密数据库密码
首先我们得下载一个druid-1.0.16.jar的包 其次键入命令 java -cp druid-1.0.16.jar com.alibaba.druid.filter.config.ConfigT ...