版权声明:欢迎关注我的博客。本文为博主【炒饭君】原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/25471349

Problem A : Counting Squares

pid=1264" rel="nofollow">From:HDU, 1264

Problem Description
Your input is a series of rectangles, one per line. Each rectangle is specified as two points(X,Y) that specify the opposite corners of a rectangle. All coordinates will be integers in the range 0 to 100. For example, the line
5 8 7 10
specifies the rectangle who's corners are(5,8),(7,8),(7,10),(5,10).
If drawn on graph paper, that rectangle would cover four squares. Your job is to count the number of unit(i.e.,1*1) squares that are covered by any one of the rectangles given as input. Any square covered by more than one rectangle should only be counted once.
 
Input
The input format is a series of lines, each containing 4 integers. Four -1's are used to separate problems, and four -2's are used to end the last problem. Otherwise, the numbers are the x-ycoordinates of two points that are opposite corners of
a rectangle.
 
Output
Your output should be the number of squares covered by each set of rectangles. Each number should be printed on a separate line.
 
Sample Input

5 8 7 10
6 9 7 8
6 8 8 11
-1 -1 -1 -1
0 0 100 100
50 75 12 90
39 42 57 73
-2 -2 -2 -2
 
Sample Output

8
10000
 
Source
 
Recommend
JGShining

题目大意:

 给定你一些矩形左下右上角坐标点。或者左上右下坐标点。求这些矩形的面积并。

解题思路:

利用线段树扫描线的知识。此题不须要离散化。

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std; struct node{
int x,y1,y2,c;
node(int x0=0,int y10=0,int y20=0,int c0=0){
x=x0;y1=y10;y2=y20;c=c0;
}
friend bool operator < (node a,node b){
if(a.x!=b.x) return a.x<b.x;
else if(a.y1!=b.y1) return a.y1<b.y1;
else if(a.y2!=b.y2) return a.y2<b.y2;
else return a.c>b.c;
}
}; const int maxh=110; struct tree{
int l,r,c,lz;
}a[maxh*4]; vector <node> v; bool input(){
int a,b,c,d;
v.clear();
while(scanf("%d%d%d%d",&a,&b,&c,&d)!=EOF){
if(a==-1 && b==-1 && c==-1 && d==-1) return true;
if(a==-2 && b==-2 && c==-2 && d==-2) return false;
v.push_back(node( min(a,c), min(b,d) , max(b,d) ,1));
v.push_back(node( max(a,c), min(b,d) , max(b,d) ,-1));
}
} void build(int l,int r,int k){
a[k].l=l;
a[k].r=r;
a[k].c=0;
a[k].lz=0;
if(l+1<r){
int mid=(l+r)/2;
build(l,mid,2*k);
build(mid,r,2*k+1);
}
} void pushdown(int k){
if(a[k].lz!=0 && a[k].l+1<a[k].r ){
a[2*k].lz+=a[k].lz;
a[2*k+1].lz+=a[k].lz;
a[2*k].c+=a[k].lz;
a[2*k+1].c+=a[k].lz;
a[k].lz=0;
}
} void insert(int l,int r,int k,int c){
if(l<=a[k].l && a[k].r<=r){
a[k].lz+=c;
a[k].c+=c;
}else{
pushdown(k);
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) insert(l,r,2*k,c);
else if(l>=mid) insert(l,r,2*k+1,c);
else{
insert(l,mid,2*k,c);
insert(mid,r,2*k+1,c);
}
}
} int query(int l,int r,int k){
pushdown(k);
if(l<=a[k].l && a[k].r<=r){
if(a[k].c>0) return r-l;
else{
if(a[k].l+1==a[k].r) return 0;
else {
int mid=(a[k].l+a[k].r)/2;
return query(l,mid,2*k) + query(mid,r,2*k+1) ;
}
}
}else{
int mid=(a[k].l+a[k].r)/2;
if(r<=mid) return query(l,r,2*k);
else if(l>=mid) return query(l,r,2*k+1);
else{
return query(l,mid,2*k) + query(mid,r,2*k+1) ;
}
}
} void solve(){
build(0,maxh,1);
sort(v.begin(),v.end());
insert(v[0].y1,v[0].y2,1,v[0].c);
int ans=0;
for(int i=1;i<v.size();i++){
//cout<<v[i].x-v[i-1].x<<" "<<query(0,maxh,1)<<endl;
ans+=(v[i].x-v[i-1].x)*query(0,maxh,1);
insert(v[i].y1,v[i].y2,1,v[i].c);
}
cout<<ans<<endl;
} int main(){
while(input()){
solve();
}
solve();
return 0;
}


HDU 1264 Counting Squares (线段树-扫描线-矩形面积并)的更多相关文章

  1. hdu 1828 Picture(线段树扫描线矩形周长并)

    线段树扫描线矩形周长并 #include <iostream> #include <cstdio> #include <algorithm> #include &l ...

  2. poj 3277 City Horizon (线段树 扫描线 矩形面积并)

    题目链接 题意: 给一些矩形,给出长和高,其中长是用区间的形式给出的,有些区间有重叠,最后求所有矩形的面积. 分析: 给的区间的范围很大,所以需要离散化,还需要把y坐标去重,不过我试了一下不去重 也不 ...

  3. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  4. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...

  5. hdu1828 Picture(线段树+扫描线+矩形周长)

    看这篇博客前可以看一下扫描线求面积:线段树扫描线(一.Atlantis HDU - 1542(覆盖面积) 二.覆盖的面积 HDU - 1255(重叠两次的面积))  解法一·:两次扫描线 如图我们可以 ...

  6. HDU 6096 String 排序 + 线段树 + 扫描线

    String Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Problem De ...

  7. hdu1542 Atlantis 线段树--扫描线求面积并

    There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some ...

  8. 【hdu1542】线段树求矩形面积并

    分割线内容转载自http://hzwer.com/879.html ------------------------------------------------------------------ ...

  9. POJ 1151 Atlantis 线段树求矩形面积并 方法详解

    第一次做线段树扫描法的题,网搜各种讲解,发现大多数都讲得太过简洁,不是太容易理解.所以自己打算写一个详细的.看完必会o(∩_∩)o 顾名思义,扫描法就是用一根想象中的线扫过所有矩形,在写代码的过程中, ...

随机推荐

  1. PWA web应用模型

    2018年的第一篇博客,最近都去挤图书馆了,希望新年新气象... 简介 PWA 是一门Google推出的web前端新技术,全称是Progressive Web App,是Google在2015年提出, ...

  2. 从零开始搭建webpack+react开发环境

    环境主要依赖版本 webpack@4.8.1 webpack-cli@2.1.3 webpack-dev-server@3.1.4 react@16.3.2 babel-core@6.26.3 bab ...

  3. UVA-10269 Adventure of Super Mario (dijkstra)

    题目大意:有A个村庄,B个城市,m条边,从起点到终点,找一条最短路径.但是,有一种工具可以使人不费力的移动L个长度,但始末点必须是城市或村庄.这种工具有k个,每个只能使用一次,并且在城市内部不可使用, ...

  4. spring注入的四种方式

    配置文件spring.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&qu ...

  5. 为什么是link-visited-hover-active

    前言 通常我们在设置链接的一些伪类(link,visited,hover,active)样式时,要让不同的状态显示正确的样式,我们需要按一定的顺序设置这些伪类的样式.这里我就按CSS2规范中推荐的顺序 ...

  6. yii2 联系我们发送邮件报错

    为什么会报错,因为国内的邮件服务商要求发送邮件的人和设置的smtp服务器账号要相同,因为联系我们的是用户,也就是发件人是用户,而不是我们配置的邮箱,所有出错. 这里我用了个取巧的办法,发件人改为自己, ...

  7. 对于get方法是否需要synchronized修饰

    具体用法没有总结,只是说明一个用法而已,对于以前个人理解出现的偏差 [问题描述] 对于一个计数功能的实现,获取值的方法是否需要加锁? [以前理解] 我只需要在进行累加的方法上进行加锁即可,这样保证其可 ...

  8. Falsk项目cookie中的 csrf_token 和表单中的 csrf_token实现

    Flask中请求体的请求开启CSRF保护可以按以下配置 from flask_wtf.csrf import CSRFProtect app.config.from_object(Config) CS ...

  9. vue.js 源代码学习笔记 ----- 工具方法 env

    /* @flow */ /* globals MutationObserver */ import { noop } from 'shared/util' // can we use __proto_ ...

  10. c# http操作类

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.N ...