Hadoop combiners are a very powerful tool to speed up our computations. We already saw what a combiner is in a previous post and we also have seen another form of optimization inthis post. Let's put all together to get the broader idea. 
The combiners are optimizations that can be used with Hadoop to make a local-reduction: the idea is to reduce the key-value pairs directly on the mapper, to avoid transmitting all of them to the reducers. 
Let's get back to the Top20 example from the previous post, which finds the top 20 words most used in a text. The Hadoop output of this job is shown below:

...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=435261
Reduce input records=37817
Reduce output records=20
...

As we can see in the lines highlighted in bold, without a combiner we have 4239 lines in input for the mappers and 37817 key-value pairs emitted (the number of different words of the text). Having defined no combiner, the input and output records of combiners are 0, and so the input records for the reducers are exactly those emitted by the mappers, 37817.

Let's define a simple combiner:

    public static class WordCountCombiner extends Reducer<text, intwritable,="" text,="" intwritable=""> {

        @Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { // computes the number of occurrences of a single word
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}

As we can see, the code has the same logic of the reducer, since its target is the same: reducing key/value pairs. 
Running the job having set the combiner gives us this result:

...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=116
Combine input records=37817
Combine output records=20

Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...

Looking at the output from Hadoop, we see that now the combiner has 37817 input records: this means that the records emitted from the mappers were all sent to the combiners; the result of the combiners is of 20 records emitted, which is the number of records received by the reducers. 
Wow, that's a great result! We avoided the transmission of a lot of data: just 20 records instead of 37817 that we had without the combiner.

But there's a big disadvantage using combiners: since is an optimization, Hadoop does not guarantee their execution. So, what can we do to ensure a reduction at the mapper-level? Simple: we can put the logic of the reducer inside the mapper!

This is exactly what we've done in the mapper of this post. This pattern is called "in-mapper combiner". The reduce part is started at mapper level, so that the key-value pairs sent to the reducers are minimized. 
Let's see Hadoop output with this pattern (in-mapper combiner and without the stand-alone combiner):

...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=118
Combine input records=0
Combine output records=0

Reduce input groups=4987
Reduce shuffle bytes=71502
Reduce input records=4987
Reduce output records=20...

Compared to the execution of the other mapper (without combining), this mapper outputs only 4987 records instead of the 37817 that are emitted to the reducers. A big reduction, even if not as big as the one obtained with the stand-alone combiner. 
And what happens if we decide to couple the in-mapper combiner pattern and the stand-alone combiner? Well, we've got the best of the two:

...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=116
Combine input records=4987
Combine output records=20

Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...

In this last case, we have the best performance because we're emitting from the mapper a reduced number of records, the combiners (if it's executed) reduce even more the size of the data to be emitted. The only downside of this approach I can think of is that it takes a lot of time to be coded.

from: http://andreaiacono.blogspot.com/2014/05/more-about-hadoop-combiners.html

更为详细的介绍Hadoop combiners-More about Hadoop combiners的更多相关文章

  1. 原来你是这样的BERT,i了i了! —— 超详细BERT介绍(一)BERT主模型的结构及其组件

    原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Tran ...

  2. Window VNC远程控制LINUX:VNC详细配置介绍

    Window VNC远程控制LINUX:VNC详细配置介绍 //---------------------------------------vnc linux下的详细配置 1.VNC的启动/停止/重 ...

  3. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  4. ThinkPHP 自动创建数据、自动验证、自动完成详细例子介绍(十九)

    原文:ThinkPHP 自动创建数据.自动验证.自动完成详细例子介绍(十九) 1:自动创建数据 //$name=$_POST['name']; //$password=$_POST['password ...

  5. hadoop学习第一天-hadoop初步环境搭建&伪分布式计算配置(详细)

    一.虚拟机环境搭建 我们用的虚拟机为vmware,Linux镜像为centOS6.5. vmware安装 安装没什么多说的,一路下一步,但是在新建虚拟机的时候有两个地方需要注意: 1.分配处理器1个就 ...

  6. [原]Redis详细配置介绍

    Redis详细配置介绍 # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 ...

  7. 更为详细的Txtsetup.sif文件解释

    更为详细的Txtsetup.sif文件解释;代码页定义, 以免文本安装模式下无法正常显示简体中文 (以下基本都是跟简体中文相关的, 不同语言版本的 Windows, 此处定义也不同)[nls]Ansi ...

  8. 详细版在虚拟机安装和使用hadoop分布式集群

    集群模式: 一台master 192.168.85.2 一台slave  192.168.85.3 jdk jdk1.8.0_74(版本不重要,看喜欢) hadoop版本 2.7.2(版本不重要,2. ...

  9. Hadoop(三) HADOOP常用命令参数介绍

    -help 功能:输出这个命令参数手册 -ls                  功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注 ...

随机推荐

  1. appium---【Mac】appium-doctor提示WARN:“fbsimctl cannot be found”解决方案

    报错提示截图如下: 解决方案: brew tap facebook/fb brew install fbsimctl --HEAD 执行完命令重新运营appium-doctor即可看到成功已安装此包:

  2. rmdir命令

    rmdir命令用来删除空目录.当目录不再被使用时,或者磁盘空间已到达使用限定值,就需要删除失去使用价值的目录.利用rmdir命令可以从一个目录中删除一个或多个空的子目录.该命令从一个目录中删除一个或多 ...

  3. 使用Unity解耦你的系统—PART3——依赖注入

    继续学习Unity,在前几篇中已经将Unity的使用方法做了一个还算详细的介绍了,主要是如何通过代码及配置文件来注册对象之间的关系.Unity内置所有的生命周期管理使用介绍,及Unity的Regist ...

  4. MySQL常用知识

    1.MySQL常用引擎有哪些? A:MySQL常用的引擎有InnoDB.MyISAM.Memory,默认时InnoDB InnoDB:磁盘表,支持事务,支持行级锁,B+Tree索引 优点:具有良好的A ...

  5. 洛谷P3803 【模板】多项式乘法 [NTT]

    题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...

  6. LCA:倍增与tarjan

    学了好久(一两个星期)都没彻底搞懂的lca,今天总算理解了.就来和大家分享下我自己的心得 首先,如果你还不懂什么是lca,出门左转自行百度 首先讲倍增 倍增的思想很简单,首先进行预处理,用一个深搜将每 ...

  7. Python并发编程-队列

    队列 IPC = Inter-Process Communication 队列 先进先出 队列的几种方法 #put() #full() #get() #empty() #get-nowait() fr ...

  8. [转]如何在 JS 代码中消灭 for 循环

    一,用好 filter,map,和其它 ES6 新增的高阶遍历函数 二,理解和熟练使用 reduce 三,用递归代替循环(可以break!) 四,使用高阶函数遍历数组时可能遇到的陷阱 五,死磕到底,T ...

  9. Dijkstra【P2446】 [SDOI2010]大陆争霸

    Background 在一个遥远的世界里有两个国家:位于大陆西端的杰森国和位于大陆东端的克里斯国.两个国家的人民分别信仰两个对立的神:杰森国信仰象征黑暗和毁灭的神曾·布拉泽,而克里斯国信仰象征光明和永 ...

  10. 深入理解javascript作用域系列第二篇

    前面的话 大多数时候,我们对作用域产生混乱的主要原因是分不清楚应该按照函数位置的嵌套顺序,还是按照函数的调用顺序进行变量查找.再加上this机制的干扰,使得变量查找极易出错.这实际上是由两种作用域工作 ...