更为详细的介绍Hadoop combiners-More about Hadoop combiners
Hadoop combiners are a very powerful tool to speed up our computations. We already saw what a combiner is in a previous post and we also have seen another form of optimization inthis post. Let's put all together to get the broader idea.
The combiners are optimizations that can be used with Hadoop to make a local-reduction: the idea is to reduce the key-value pairs directly on the mapper, to avoid transmitting all of them to the reducers.
Let's get back to the Top20 example from the previous post, which finds the top 20 words most used in a text. The Hadoop output of this job is shown below:
...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=435261
Reduce input records=37817
Reduce output records=20
...
As we can see in the lines highlighted in bold, without a combiner we have 4239 lines in input for the mappers and 37817 key-value pairs emitted (the number of different words of the text). Having defined no combiner, the input and output records of combiners are 0, and so the input records for the reducers are exactly those emitted by the mappers, 37817.
Let's define a simple combiner:
public static class WordCountCombiner extends Reducer<text, intwritable,="" text,="" intwritable=""> { @Override
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { // computes the number of occurrences of a single word
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
As we can see, the code has the same logic of the reducer, since its target is the same: reducing key/value pairs.
Running the job having set the combiner gives us this result:
...
Map input records=4239
Map output records=37817
Map output bytes=359621
Input split bytes=116
Combine input records=37817
Combine output records=20
Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...
Looking at the output from Hadoop, we see that now the combiner has 37817 input records: this means that the records emitted from the mappers were all sent to the combiners; the result of the combiners is of 20 records emitted, which is the number of records received by the reducers.
Wow, that's a great result! We avoided the transmission of a lot of data: just 20 records instead of 37817 that we had without the combiner.
But there's a big disadvantage using combiners: since is an optimization, Hadoop does not guarantee their execution. So, what can we do to ensure a reduction at the mapper-level? Simple: we can put the logic of the reducer inside the mapper!
This is exactly what we've done in the mapper of this post. This pattern is called "in-mapper combiner". The reduce part is started at mapper level, so that the key-value pairs sent to the reducers are minimized.
Let's see Hadoop output with this pattern (in-mapper combiner and without the stand-alone combiner):
...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=118
Combine input records=0
Combine output records=0
Reduce input groups=4987
Reduce shuffle bytes=71502
Reduce input records=4987
Reduce output records=20...
Compared to the execution of the other mapper (without combining), this mapper outputs only 4987 records instead of the 37817 that are emitted to the reducers. A big reduction, even if not as big as the one obtained with the stand-alone combiner.
And what happens if we decide to couple the in-mapper combiner pattern and the stand-alone combiner? Well, we've got the best of the two:
...
Map input records=4239
Map output records=4987
Map output bytes=61522
Input split bytes=116
Combine input records=4987
Combine output records=20
Reduce input groups=20
Reduce shuffle bytes=194
Reduce input records=20
Reduce output records=20
...
In this last case, we have the best performance because we're emitting from the mapper a reduced number of records, the combiners (if it's executed) reduce even more the size of the data to be emitted. The only downside of this approach I can think of is that it takes a lot of time to be coded.
from: http://andreaiacono.blogspot.com/2014/05/more-about-hadoop-combiners.html
更为详细的介绍Hadoop combiners-More about Hadoop combiners的更多相关文章
- 原来你是这样的BERT,i了i了! —— 超详细BERT介绍(一)BERT主模型的结构及其组件
原来你是这样的BERT,i了i了! -- 超详细BERT介绍(一)BERT主模型的结构及其组件 BERT(Bidirectional Encoder Representations from Tran ...
- Window VNC远程控制LINUX:VNC详细配置介绍
Window VNC远程控制LINUX:VNC详细配置介绍 //---------------------------------------vnc linux下的详细配置 1.VNC的启动/停止/重 ...
- Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装
Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...
- ThinkPHP 自动创建数据、自动验证、自动完成详细例子介绍(十九)
原文:ThinkPHP 自动创建数据.自动验证.自动完成详细例子介绍(十九) 1:自动创建数据 //$name=$_POST['name']; //$password=$_POST['password ...
- hadoop学习第一天-hadoop初步环境搭建&伪分布式计算配置(详细)
一.虚拟机环境搭建 我们用的虚拟机为vmware,Linux镜像为centOS6.5. vmware安装 安装没什么多说的,一路下一步,但是在新建虚拟机的时候有两个地方需要注意: 1.分配处理器1个就 ...
- [原]Redis详细配置介绍
Redis详细配置介绍 # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 ...
- 更为详细的Txtsetup.sif文件解释
更为详细的Txtsetup.sif文件解释;代码页定义, 以免文本安装模式下无法正常显示简体中文 (以下基本都是跟简体中文相关的, 不同语言版本的 Windows, 此处定义也不同)[nls]Ansi ...
- 详细版在虚拟机安装和使用hadoop分布式集群
集群模式: 一台master 192.168.85.2 一台slave 192.168.85.3 jdk jdk1.8.0_74(版本不重要,看喜欢) hadoop版本 2.7.2(版本不重要,2. ...
- Hadoop(三) HADOOP常用命令参数介绍
-help 功能:输出这个命令参数手册 -ls 功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注 ...
随机推荐
- 如何将svg图标快速转换成字体图标?
今天遇到一个客户需要我将页面的图标做成字体图标,想想哎可能整的麻烦,不过想想这也是对项目的一个优化 ( 1.字体图标直接用color自由控制颜色:2.整合在一起,减少http请求等 PS:平时 ...
- 不修改系统日期和时间格式,解决Delphi报错提示 '****-**-**'is not a valid date and time
假如操作系统的日期格式不是yyyy-MM-dd格式,而是用strtodate('2014-10-01')) 来转换的话,程序会提示爆粗 '****-**-**'is not a valid date ...
- ASP.NET中登录功能的简单逻辑设计
ASP.NET中登录功能的简单逻辑设计 概述 逻辑设计 ...
- QT在windows平台安装使用MInGW编译
首先,Qt 5.9 的安装包与之前相比,不再区分 VS 版本和 MinGW 版本,而是全都整合到了一个安装包中.因此,与之前的安装包相比,体积也是大了不少,以前是 1G 多,现在是 2G 多. 双击启 ...
- python爬虫实战(四)--------豆瓣网的模拟登录(模拟登录和验证码的处理----scrapy)
在利用scrapy框架爬各种网站时,一定会碰到某些网站是需要登录才能获取信息. 这两天也在学习怎么去模拟登录,通过自己码的代码和借鉴别人的项目,调试成功豆瓣的模拟登录,顺便处理了怎么自动化的处理验证码 ...
- `__pycache__` 是什么
为了提高模块加载的速度,每个模块都会在 __pycache__ 文件夹中放置该模块的预编译模块,命名为 module.version.pyc, version 是模块的预编译版本编码,一般都包含 Py ...
- Mybatis源码分析之参数处理
Mybatis对参数的处理是值得推敲的,不然在使用的过程中对发生的一系列错误直接懵逼了. 以前遇到参数绑定相关的错误我就是直接给加@param注解,也稀里糊涂地解决了,但是后来遇到了一些问题推翻了我的 ...
- http1.0和1.1的区别
1.HTTP 1.1支持长连接(PersistentConnection)和请求的流水线(Pipelining)处理 HTTP 1.0规定浏览器与服务器只保持短暂的连接,浏览器的每次请求都需要与服务器 ...
- SpringBoot学习(六)
1.pom 文件 <?xml version="1.0" encoding="utf-8"?> <dependencies> <d ...
- Vue 2.0学习(四)计算属性
{{}}模板内的表达式常用于简单的运算,当运算过长或逻辑复杂时,会难以维护. <div> {{ text.split(',').reverse().join('') }} </div ...