Codeforces Round #112 (Div. 2) D. Beard Graph
地址:http://codeforces.com/problemset/problem/165/D
题目:
4 seconds
256 megabytes
standard input
standard output
Let's define a non-oriented connected graph of n vertices and n - 1 edges as a beard, if all of its vertices except, perhaps, one, have the degree of 2 or 1 (that is, there exists no more than one vertex, whose degree is more than two). Let us remind you that the degree of a vertex is the number of edges that connect to it.
Let each edge be either black or white. Initially all edges are black.
You are given the description of the beard graph. Your task is to analyze requests of the following types:
- paint the edge number i black. The edge number i is the edge that has this number in the description. It is guaranteed that by the moment of this request the i-th edge is white
- paint the edge number i white. It is guaranteed that by the moment of this request the i-th edge is black
- find the length of the shortest path going only along the black edges between vertices a and b or indicate that no such path exists between them (a path's length is the number of edges in it)
The vertices are numbered with integers from 1 to n, and the edges are numbered with integers from 1 to n - 1.
The first line of the input contains an integer n (2 ≤ n ≤ 105) — the number of vertices in the graph. Next n - 1 lines contain edges described as the numbers of vertices vi, ui (1 ≤ vi, ui ≤ n, vi ≠ ui) connected by this edge. It is guaranteed that the given graph is connected and forms a beard graph, and has no self-loops or multiple edges.
The next line contains an integer m (1 ≤ m ≤ 3·105) — the number of requests. Next m lines contain requests in the following form: first a line contains an integer type, which takes values from 1 to 3, and represents the request type.
If type = 1, then the current request is a request to paint the edge black. In this case, in addition to number type the line should contain integer id (1 ≤ id ≤ n - 1), which represents the number of the edge to paint.
If type = 2, then the current request is a request to paint the edge white, its form is similar to the previous request.
If type = 3, then the current request is a request to find the distance. In this case, in addition to type, the line should contain two integers a, b (1 ≤ a, b ≤ n, a can be equal to b) — the numbers of vertices, the distance between which must be found.
The numbers in all lines are separated by exactly one space. The edges are numbered in the order in which they are given in the input.
For each request to "find the distance between vertices a and b" print the result. If there is no path going only along the black edges between vertices a and b, then print "-1" (without the quotes). Print the results in the order of receiving the requests, separate the numbers with spaces or line breaks.
3
1 2
2 3
7
3 1 2
3 1 3
3 2 3
2 2
3 1 2
3 1 3
3 2 3
1
2
1
1
-1
-1
6
1 5
6 4
2 3
3 5
5 6
6
3 3 4
2 5
3 2 6
3 1 2
2 3
3 3 1
3
-1
3
2
In the first sample vertices 1 and 2 are connected with edge number 1, and vertices 2 and 3 are connected with edge number 2. Before the repainting edge number 2 each vertex is reachable from each one along the black edges. Specifically, the shortest path between 1 and 3 goes along both edges.
If we paint edge number 2 white, vertex 3 will end up cut off from other vertices, that is, no path exists from it to any other vertex along the black edges.
思路: 树链剖分模板题。
#include <bits/stdc++.h> using namespace std; #define MP make_pair
#define PB push_back
typedef long long LL;
typedef pair<int,int> PII;
const double eps=1e-;
const double pi=acos(-1.0);
const int K=2e5+;
const int mod=1e9+; vector<int>mp[K];
int top[K],sz[K],fa[K],son[K],id[K],hid[K],deep[K];
int cnt,sum[*K];
PII edge[K];
int query(int o,int l,int r,int nl,int nr)
{
if(l==nl&&r==nr) return sum[o];
int mid=l+r>>;
if(nr<=mid) return query(o<<,l,mid,nl,nr);
if(nl>mid) return query(o<<|,mid+,r,nl,nr);
return query(o<<,l,mid,nl,mid)+query(o<<|,mid+,r,mid+,nr);
}
int update(int o,int l,int r,int x,int v)
{
if(l==r)
return sum[o]=v;
int mid=l+r>>;
if(x<=mid) update(o<<,l,mid,x,v);
else if(x>mid) update(o<<|,mid+,r,x,v);
return sum[o]=sum[o<<]+sum[o<<|];
}
void dfs1(int x,int f)
{
sz[x]=,fa[x]=f,son[x]=-,deep[x]=deep[f]+;
for(int i=;i<mp[x].size();i++)
if(mp[x][i]!=f)
{
dfs1(mp[x][i],x);
sz[x]+=sz[mp[x][i]];
if(son[x]==-||sz[son[x]]<sz[mp[x][i]])
son[x]=mp[x][i];
}
}
void dfs2(int x,int f) ///每条边用深度低的节点的序号表示
{
top[x]=f,id[x]=++cnt,hid[id[x]]=x;
if(son[x]!=-) dfs2(son[x],f);
for(int i=;i<mp[x].size();i++)
if(mp[x][i]!=fa[x]&&mp[x][i]!=son[x])
dfs2(mp[x][i],mp[x][i]);
}
void tree_update(int x,int y,int v)
{
if(deep[x]<deep[y]) x=y;
update(,,cnt,id[x],v);
}
int tree_query(int x,int y)
{
int ret=;
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) swap(x,y);
ret+=deep[x]-deep[top[x]]+;
if(query(,,cnt,id[top[x]],id[x])) return -;
x=fa[top[x]];
}
if(x==y) return ret;
if(deep[x]>deep[y]) swap(x,y);
ret+=deep[y]-deep[son[x]]+;
if(query(,,cnt,id[son[x]],id[y])) ret=-;
return ret;
}
int main(void)
{
int n,q;
while(~scanf("%d",&n))
{
for(int i=,x,y;i<n;i++)
scanf("%d%d",&x,&y),mp[x].PB(y),mp[y].PB(x),edge[i]=MP(x,y);
dfs1(,),dfs2(,);
scanf("%d",&q);
int op,x,y;
while(q--)
{
scanf("%d%d",&op,&x);
if(op==)
scanf("%d",&y),printf("%d\n",tree_query(x,y));
else if(op==)
tree_update(edge[x].first,edge[x].second,);
else
tree_update(edge[x].first,edge[x].second,);
}
}
return ;
}
Codeforces Round #112 (Div. 2) D. Beard Graph的更多相关文章
- Codeforces Round #112 (Div. 2)
Codeforces Round #112 (Div. 2) C. Another Problem on Strings 题意 给一个01字符串,求包含\(k\)个1的子串个数. 思路 统计字符1的位 ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #237 (Div. 2) C. Restore Graph(水构造)
题目大意 一个含有 n 个顶点的无向图,顶点编号为 1~n.给出一个距离数组:d[i] 表示顶点 i 距离图中某个定点的最短距离.这个图有个限制:每个点的度不能超过 k 现在,请构造一个这样的无向图, ...
- Codeforces Round #112 (Div. 2)---A. Supercentral Point
Supercentral Point time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #261 (Div. 2)——Pashmak and Graph
题目链接 题意: n个点.m个边的有向图.每条边有一个权值,求一条最长的路径,使得路径上边值严格递增.输出路径长度 )) 分析: 由于路径上会有反复点,而边不会反复.所以最開始想的是以边为状态进行DP ...
- Codeforces Round #600 (Div. 2) - D. Harmonious Graph(并查集)
题意:对于一张图,如果$a$与$b$连通,则对于任意的$c(a<c<b)$都有$a$与$c$连通,则称该图为和谐图,现在给你一张图,问你最少添加多少条边使图变为和谐图. 思路:将一个连通块 ...
- 构造图 Codeforces Round #236 (Div. 2) C. Searching for Graph
题目地址 /* 题意:要你构造一个有2n+p条边的图,使得,每一个含k个结点子图中,最多有2*k+p条边 水得可以啊,每个点向另外的点连通,只要不和自己连,不重边就可以,正好2*n+p就结束:) */ ...
- DFS/并查集 Codeforces Round #286 (Div. 2) B - Mr. Kitayuta's Colorful Graph
题目传送门 /* 题意:两点之间有不同颜色的线连通,问两点间单一颜色连通的路径有几条 DFS:暴力每个颜色,以u走到v为结束标志,累加条数 注意:无向图 */ #include <cstdio& ...
- CodeForces 840B - Leha and another game about graph | Codeforces Round #429(Div 1)
思路来自这里,重点大概是想到建树和无解情况,然后就变成树形DP了- - /* CodeForces 840B - Leha and another game about graph [ 增量构造,树上 ...
随机推荐
- hdu 1201:18岁生日(水题,闰年)
18岁生日 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- 【LDA】nlp
http://pythonhosted.org/lda/getting_started.html http://radimrehurek.com/gensim/
- leetcode -- Unique Binary Search Trees todo
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- JS-表单提交检查表单字数方法
解决方法: //作用于整个html中 function check(form) { //topic是input的id,descrip是textarea的id var topic = $("# ...
- hdu4525
可以发现天的操作相当于*(k1+k2) 然后就很好判断了. 威威猫系列故事——吃鸡腿 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 6 ...
- Excel表导出
前言 分别介绍两种导出Exce表格的方法和读取Excel表格数据方法. 1.在MVC下的表格导出. 2.基于NPOI的表格导出. 3.读取Excel表格数据. 第一种方法:在MVC下的表格导出. 首 ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- Java项目使用oh-my-email发送邮件
本文使用Github开源项目oh-my-email进行测试邮件发送,并未进行更为深度的测试,如果想要快速使用,的确是一个很好的邮件发送组件.https://github.com/biezhi/oh-m ...
- 160504、springmvc返回json数据编码格式设定
<!-- 启动注解驱动的Spring MVC功能,注册请求url和注解POJO类方法的映射 --> <bean class="org.springframework.web ...
- 面试之四:JVM内存区域分配
1.程序计数器(线程私有)[不会OOM] 记录线程执行的代码位置,每个线程各自独有. 2.栈:虚拟机栈和本地方法栈(线程私有)[会OOM和StackOverflow] 虚拟机栈 每个JAVA方法在执行 ...