bzoj 4347 [POI2016]Nim z utrudnieniem DP
4347: [POI2016]Nim z utrudnieniem
Time Limit: 30 Sec Memory Limit: 64 MB
Submit: 733 Solved: 281
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 3 4 1 2
Sample Output
%%claris https://www.cnblogs.com/clrs97/p/5006924.html
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 1050007
#define P 1000000007 #define Wb putchar(' ')
#define We putchar('\n')
#define rg register int
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
inline void write(int x)
{
if(x<) putchar('-'),x=-x;
if (x==) putchar();
int num=;char c[];
while(x) c[++num]=(x%)+,x/=;
while(num) putchar(c[num--]);
} int n,D,m,p;
int a[N],f[][N],g[N]; int add(int a,int b)
{
a+=b;
if (a>=P) a-=P;
return a;
}
int main()
{
n=read(),D=read();
for (rg i=;i<n;i++)
{
int x=read();
a[x]++;
if (x>m) m=x;
}
f[][]=p=;
for (rg i=;i<=m;i++)
{
while(p<=i)p<<=;
while(a[i]--)
{
for (rg k=;k<p;k++) g[k]=add(f[D-][k],f[][k^i]);
for (rg j=D-;j>=;j--)
for (rg k=;k<p;k++)
if (k<=(k^i))
{
int x=f[j][k];
f[j][k]=add(f[j-][k],f[j][k^i]);
f[j][k^i]=add(f[j-][k^i],x);
}
for (rg k=;k<p;k++) f[][k]=g[k];
}
}
write(add(f[][],P-(n%D==)));
}
bzoj 4347 [POI2016]Nim z utrudnieniem DP的更多相关文章
- 【bzoj4347】[POI2016]Nim z utrudnieniem dp
题解: 感觉我简直是个傻逼 把题目数据范围看错了.. 然后觉得这题非常的不可做 sigmaai <1e7.... 这题的dp是非常简单的,注意到d很小 f[i][j][k]表示前i个,%d为j, ...
- BZOJ4347 : [POI2016]Nim z utrudnieniem
将石子从小到大排序,然后DP. 设$f[i][j][k]$表示考虑了前$i$堆的石子,当前扔掉的堆数模$d$为$j$,没有扔掉的石子的异或和为$k$的方案数. 因为石子排过序,所以转移的复杂度为$O( ...
- [POI2016]Nim z utrudnieniem
Description A和B两个人玩游戏,一共有m颗石子,A把它们分成了n堆,每堆石子数分别为a[1],a[2],...,a[n],每轮可以选择一堆石子,取掉任意颗石子,但不能不取.谁先不能操作,谁 ...
- 解题:POI 2016 Nim z utrudnieniem
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
- BZOJ 1597 土地购买(斜率优化DP)
如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...
- Bzoj 1055: [HAOI2008]玩具取名 (区间DP)
Bzoj 1055: [HAOI2008]玩具取名 (区间DP) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1055 区间动态规划和可 ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
随机推荐
- org.apache.poi版本问题
问题描述: 今天跑一段历史代码,发现不能启动,抛出java.lang.NoSuchFieldError: RETURN_NULL_AND_BLANK 问题 解决办法: 把org.apache.poi的 ...
- 微软职位内部推荐-Principal Development Lead - SharePoint
微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...
- python3【基础】-and和or的短路逻辑
1. 表达式只有一个逻辑运算符 python中哪些对象会被当成False,哪些又是True呢? 基本数据类型中的None.任何数值类型中的0.空字符串"",空列表[],空元组()和 ...
- Android 对话框(Dialogs)
对话框是提示用户作出决定或输入额外信息的小窗口. 对话框不会填充屏幕,通常用于需要用户采取行动才能继续执行的模式事件. 1.对话框设计 如需了解有关如何设计对话框的信息(包括语言建议),请阅读对话框设 ...
- Masha and Bears(翻译+思维)
Description A family consisting of father bear, mother bear and son bear owns three cars. Father bea ...
- 欢迎来怼--第二十三次Scrum会议
一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/11 17:20~17:55,总计35min. 地 ...
- 总结在Visual Studio Code运行node.js项目遇到的问题
一.cannot find module “lodash” 项目运行时出现以下错误: Error: Cannot find module 'lodash' at Function.Module._re ...
- JavaScript判断密码强度
以下是代码: <html> <head> <title>JS判断密码强度</title> <script language=javascript& ...
- Struts2 应知应会
struts.xml 文件的 action 的配置: Struts2 中结果类型的配置来自于下面: 其中: dispatcher:转发技术,转发到一个 jsp 视图 redirect:重定向到一个 j ...
- MySQL---索引算法B+/B-树原理(二)
B+/-Tree原理 B-Tree介绍 B-Tree是一种多路搜索树(并不是二叉的): 1.定义任意非叶子结点最多只有M个儿子:且M>2: 2.根结点的儿子数为[2, ...