题目传送门

排列计数

题目描述

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 $10^9+7$ 取模。

输入输出格式

输入格式:

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

输出格式:

输出 T 行,每行一个数,表示求出的序列数

输入输出样例

输入样例#1:

5
1 0
1 1
5 2
100 50
10000 5000
输出样例#1:

0
1
20
578028887
60695423

说明

测试点 1 ~ 3: $T=1000,n \leq 8,m \leq 8$;

测试点 4 ~ 6: $T=1000,n \leq 12,m \leq 12$;

测试点 7 ~ 9: $T=1000,n \leq 100,m \leq 100$;

测试点 10 ~ 12:$T=1000,n \leq 1000,m \leq 1000$;

测试点 13 ~ 14:$T=500000,n \leq 1000,m \leq 1000$;

测试点 15 ~ 20:$T=500000,n \leq 1000000,m \leq 1000000$


  分析:

  一道组合数、错排公式的模板。

  很显然可以推出公式是$D_{n-m} \times C^m_n$,那么我们只要预处理即可。

  错排公式的递推式:$D_n=(n-1) \times (D_{n-1}+D_{n-2})$,组合数的阶乘公式:$C^m_n=\frac{n!}{m! \times (n-m)!}$。

  只要预处理$D$数组和数据范围内所有数的阶乘$jc[i]$以及$jc[i]$的逆元$ny[i]$即可。这里求逆元可以直接费马小定理,因为模数是质数。

  Code:

  

//It is made by HolseLee on 14th Sep 2018
//Luogu.org P4071
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
const int N=1e6+;
const ll mod=1e9+;
int T,n,m;
ll jc[N],ny[N],d[N]; template<typename re>
inline void read(re &x)
{
x=; char ch=getchar(); bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
x=x*+ch-''; ch=getchar();
}
flag ? x=-x : ;
} inline ll power(ll x,ll y)
{
ll ret=;
while( y ) {
if( y& ) ret=(ret*x)%mod;
y>>=, x=(x*x)%mod;
}
return ret;
} void ready()
{
d[]=, d[]=, jc[]=, ny[]=;
for(int i=; i<N; ++i) d[i]=((i-)*(d[i-]+d[i-])+mod)%mod;
for(int i=; i<N; ++i) {
jc[i]=((jc[i-]*i)+mod)%mod;
ny[i]=power(jc[i],mod-);
}
} int main()
{
read(T); ready();
while( T-- ) {
read(n), read(m);
if( m==n ) puts("");
else if( m>n ) puts("");
else if( m== ) printf("%lld\n",d[n]);
else {
printf("%lld\n",((d[n-m]*(ny[m]*ny[n-m]%mod))%mod*jc[n])%mod);
}
}
return ;
}

洛谷P4071 [SDOI2016] 排列计数 [组合数学]的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  3. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  4. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  5. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  6. [SDOI2016] 排列计数 (组合数学)

    [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰 ...

  7. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. P4071 [SDOI2016]排列计数

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  9. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

随机推荐

  1. 前端PHP入门-013-变量作用域

    目前,我们知道了几个不同的规矩: 函数定义时后括号里面接的变量是形式上的参数(形参),与函数体外的变量没有任何关系.仅仅是在函数内部执行 函数内声明的变量也与函数外的变量没关系. 但是,我们实际的处理 ...

  2. git分支管理图

  3. shell多进程的实现

    需求:多个脚本彼此互不干涉,同时运行,节省时间 菜鸟级实现: #!/bin/sh dir="/data/test" $dir/sbin/test1.sh >> $dir ...

  4. 【转】手摸手,带你用vue撸后台 系列二(登录权限篇)

    前言 拖更有点严重,过了半个月才写了第二篇教程.无奈自己是一个业务猿,每天被我司的产品虐的死去活来,之前又病了一下休息了几天,大家见谅. 进入正题,做后台项目区别于做其它的项目,权限验证与安全性是非常 ...

  5. 原生JS实现点击一个按钮显示一个div,再点击按钮div隐藏,或点击除div外其它空白处div隐藏

    <!DOCTYPE html> <html style="font-size: 24px"> <head> <title>js点击按 ...

  6. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  7. 基本控件文档-UITextField属性---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...

  8. javaScript 中的一些日常用法总结

    从今天开始把开发中常用到的js语法 一一记录下来 方便以后复习回顾用: 1:对字符串进行替换 replace 以及 replaceAll replace : var begin_date =begin ...

  9. CodeForces 990B

    You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, u ...

  10. 20、什么样的项目适合Web自动化测试

    1.什么是Web自动化测试?概念:让程序代替人为自动验证Web项目功能的过程 2.什么Web项目适合做自动化测试 1.需求变动不频繁 2.项目周期长 3.项目需要回归测试 3.如阿进行Web自动化测试 ...