题目描述

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

输入输出格式

输入格式:

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含三个正整数ui、vi、wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi)

输出格式:

一行,包含一个正整数,即为该网络的最大流。

输入输出样例

输入样例#1: 复制

4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40
输出样例#1: 复制

50

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=25

对于70%的数据:N<=200,M<=1000

对于100%的数据:N<=10000,M<=100000

样例说明:

题目中存在3条路径:

4-->2-->3,该路线可通过20的流量

4-->3,可通过20的流量

4-->2-->1-->3,可通过10的流量(边4-->2之前已经耗费了20的流量)

故流量总计20+20+10=50。输出50。

网络流模板

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1000010
using namespace std;
queue<int>q;
,ans,s,e;
int to[N],cnt[N],cap[N],lev[N],head[N],nextt[N];
inline int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int add(int x,int y,int z)
{
    to[++tot]=y,cap[tot]=z,nextt[tot]=head[x],head[x]=tot;
    to[++tot]=x,cap[tot]=,nextt[tot]=head[y],head[y]=tot;
}
bool bfs()
{
    while(!q.empty()) q.pop();
    ;i<=n;i++)
    {
        lev[i]=-;
        cnt[i]=head[i];
    }
    q.push(s),lev[s]=;
    while(!q.empty())
    {
        int x=q.front();q.pop();
        for(int i=head[x];i;i=nextt[i])
        {
            int t=to[i];
            &&lev[t]==-)
            {
                lev[t]=lev[x]+;
                q.push(t);
                if(t==e) return true;
            }
        }
    }
    return false;
}
int dinic(int x,int flow)
{
    if(x==e) return flow;
    ,delta;
    for(int &i=cnt[x];i;i=nextt[i])
    {
        int t=to[i];
        &&lev[t]==lev[x]+)
        {
            delta=dinic(t,min(cap[i],flow-rest));
            if(delta)
            {
                rest+=delta;
                cap[i]-=delta;
                cap[i^]+=delta;
                if(rest==flow) break;
            }
        }
    }
    ;
    return rest;
}
int main()
{
    n=read(),m=read(),s=read(),e=read();
    ;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        add(x,y,z);
    }
    while(bfs()) ans+=dinic(s,e);
    printf("%d",ans);
    ;
}

洛谷——P3376 【模板】网络最大流的更多相关文章

  1. 【最大流ISAP】洛谷P3376模板题

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  2. P3376 [模板] 网络最大流

    https://www.luogu.org/blog/ONE-PIECE/wang-lao-liu-jiang-xie-zhi-dinic EK 292ms #include <bits/std ...

  3. 洛谷P3376【模板】网络最大流 ISAP

    这篇博客写得非常好呀. 传送门 于是我是DCOI这一届第一个网络流写ISAP的人了,之后不用再被YKK她们嘲笑我用Dinic了!就是这样! 感觉ISAP是会比Dinic快,只分一次层,然后不能增广了再 ...

  4. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  5. 洛谷 P1546 最短网络 Agri-Net

    题目链接 https://www.luogu.org/problemnew/show/P1546 题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当 ...

  6. 洛谷P1546 最短网络 Agri-Net(最小生成树,Kruskal)

    洛谷P1546 最短网络 Agri-Net 最小生成树模板题. 直接使用 Kruskal 求解. 复杂度为 \(O(E\log E)\) . #include<stdio.h> #incl ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 洛谷 P3376 【【模板】网络最大流】

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui. ...

  9. 洛谷 P3376 【模板】网络最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

随机推荐

  1. 解决VSCode终端中文乱码问题

    VSCode终端其实调用的是cmd.exe,所以当这里出现中文乱码的时候要解决的是cmd的编码设置问题. 可以通过chcp命令查看cmd的编码设置,GBK2312的代码页编号是936,然后改成utf- ...

  2. 2017-2018-2 20179207 《网络攻防技术》第十三周作业 python3实现SM234算法

    国密算法SM234 的python3实现 国家标准 GM/T 0002-2012 <SM4分组密码算法> GM/T 0003.1-2012 <SM2椭圆曲线公钥密码算法 第1部分:总 ...

  3. 你必须了解Spring的生态

    Spring不止是提供了IOC.AOP的功能,还提供了大量的基于Spring的项目,拿来用就行了,用于一站式开发,大大降低了开发的难度. 下面列举下主要的一些Spring的生态项目: Spring B ...

  4. IO流-文件的写入和读取

    1.文件写入 类: FileWriter继承自Writer(字符流基类之一,另外一个为Reader) 方法: writer(参数); 根据参数可以写入字符.字符数组.字符数组中的一部分.整型.字符串. ...

  5. 【转】E: Sub-process /usr/bin/dpkg returned an error code (1)

    原链接: jaryWang:E: Sub-process /usr/bin/dpkg returned an error code (1)错误解决 1.$ sudo mv /var/lib/dpkg/ ...

  6. OTA之流式更新及shell实现

    在OTA升级时,需要从网络下载OTA包,并写到flash上的对应分区中. 最简单的方式是将下载与更新分离,先将完整的数据包下载到本地,再将本地的OTA包更新到flash上.方便可靠. 但这种方式的问题 ...

  7. UIScrollViewDelegate 方法调用

    UIScrollViewDelegate 方法调用 /** 设置缩放的View, 初始化完之后调用此方法告诉scrollView 谁可以缩放操作, 然后进行布局 */ func viewForZoom ...

  8. vue单选,多选,多选的内容显示在页面可删除

    vue做单选只能选一个 <template> <div class="list"> <!-- 多行多列单选 --> <span>只能 ...

  9. nginx 服务器篇

    Nginx 服务器类型 1. Web服务器 Web服务器用于提供HTTP(包括HTTPS)的访问,例如Nginx.Apache.IIS等. 2. 应用程序服务器 应用程序服务器能够用于应用程序的运行, ...

  10. SuSE Linux Supervisor的安装与使用案例

      建议使用 root 管理员账户操作 1.安装工具 1.apache 2..Net Core(dotnet-sdk-2.0) 3.Supervisor(进程管理工具,目的是服务器一开机就启动服务器 ...