题目描述

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

输入输出格式

输入格式:

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含三个正整数ui、vi、wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi)

输出格式:

一行,包含一个正整数,即为该网络的最大流。

输入输出样例

输入样例#1: 复制

4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40
输出样例#1: 复制

50

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=25

对于70%的数据:N<=200,M<=1000

对于100%的数据:N<=10000,M<=100000

样例说明:

题目中存在3条路径:

4-->2-->3,该路线可通过20的流量

4-->3,可通过20的流量

4-->2-->1-->3,可通过10的流量(边4-->2之前已经耗费了20的流量)

故流量总计20+20+10=50。输出50。

网络流模板

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1000010
using namespace std;
queue<int>q;
,ans,s,e;
int to[N],cnt[N],cap[N],lev[N],head[N],nextt[N];
inline int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int add(int x,int y,int z)
{
    to[++tot]=y,cap[tot]=z,nextt[tot]=head[x],head[x]=tot;
    to[++tot]=x,cap[tot]=,nextt[tot]=head[y],head[y]=tot;
}
bool bfs()
{
    while(!q.empty()) q.pop();
    ;i<=n;i++)
    {
        lev[i]=-;
        cnt[i]=head[i];
    }
    q.push(s),lev[s]=;
    while(!q.empty())
    {
        int x=q.front();q.pop();
        for(int i=head[x];i;i=nextt[i])
        {
            int t=to[i];
            &&lev[t]==-)
            {
                lev[t]=lev[x]+;
                q.push(t);
                if(t==e) return true;
            }
        }
    }
    return false;
}
int dinic(int x,int flow)
{
    if(x==e) return flow;
    ,delta;
    for(int &i=cnt[x];i;i=nextt[i])
    {
        int t=to[i];
        &&lev[t]==lev[x]+)
        {
            delta=dinic(t,min(cap[i],flow-rest));
            if(delta)
            {
                rest+=delta;
                cap[i]-=delta;
                cap[i^]+=delta;
                if(rest==flow) break;
            }
        }
    }
    ;
    return rest;
}
int main()
{
    n=read(),m=read(),s=read(),e=read();
    ;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        add(x,y,z);
    }
    while(bfs()) ans+=dinic(s,e);
    printf("%d",ans);
    ;
}

洛谷——P3376 【模板】网络最大流的更多相关文章

  1. 【最大流ISAP】洛谷P3376模板题

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

  2. P3376 [模板] 网络最大流

    https://www.luogu.org/blog/ONE-PIECE/wang-lao-liu-jiang-xie-zhi-dinic EK 292ms #include <bits/std ...

  3. 洛谷P3376【模板】网络最大流 ISAP

    这篇博客写得非常好呀. 传送门 于是我是DCOI这一届第一个网络流写ISAP的人了,之后不用再被YKK她们嘲笑我用Dinic了!就是这样! 感觉ISAP是会比Dinic快,只分一次层,然后不能增广了再 ...

  4. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  5. 洛谷 P1546 最短网络 Agri-Net

    题目链接 https://www.luogu.org/problemnew/show/P1546 题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当 ...

  6. 洛谷P1546 最短网络 Agri-Net(最小生成树,Kruskal)

    洛谷P1546 最短网络 Agri-Net 最小生成树模板题. 直接使用 Kruskal 求解. 复杂度为 \(O(E\log E)\) . #include<stdio.h> #incl ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 洛谷 P3376 【【模板】网络最大流】

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui. ...

  9. 洛谷 P3376 【模板】网络最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行 ...

随机推荐

  1. WebAPI IE8、IE9 跨域问题

    关于WebAPI跨域的问题,网上已经很多了,以下方案可以解决很多跨域问题,但是都不支持IE8.IE9浏览器,JSONP也只能支持Get请求 通过dll配置 Install-Package Micros ...

  2. 「LibreOJ β Round #4」框架

    https://loj.ac/problem/527 题目描述 有一个n×m的矩形框架,但其中有些边被删除了.qmqmqm想知道剩余部分中还有多少完整的正方形.只有当一个正方形的每一条边均被保留下来, ...

  3. CF745 C 并查集

    并查集由于政府不能连通我们可以先按给出的边建立连通块,再将不含有政府的点全部作为一个连通块,边数为(n-1)*n/2然后 贪心地将该连通块与[含政府的.且包含点数最多的]连通块相连,然后由于新增了一些 ...

  4. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  5. CSS基础复习

    重新撸一遍CSS的基础,因为以前面试的时候被问到,突然发现某些概念搞不清楚,瞬间懵逼了,其实我都知道的,就是因为不会炒概念,导致面试官觉得我很low,你特么连这个都不知道还敢来面试,回家种田去好嘛! ...

  6. Spring Boot中对log4j进行多环境不同日志级别的控制

    之前介绍了在<Spring boot中使用log4j记录日志>,仅通过log4j.properties对日志级别进行控制,对于需要多环境部署的环境不是很方便,可能我们在开发环境大部分模块需 ...

  7. redis+cookie+json+filter实现单点登录

    目录: 1.项目集成redis客户端jedis 引入Jedis pom 2.redis连接池构建及调试 1)JedisPoolConfig源码解析 2)JedisPool源码解析 3)JedisPoo ...

  8. Deep Learning基础--各个损失函数的总结与比较

    损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验 ...

  9. 4、GitLab 创建、删除、修改项目

    一.gitLab创建项目 1.创建用户组 2.填写组信息后单击“Create group” 其中:“Group path”将显示在git路径中 3.选择需要加入该组的“用户”和“角色”后点击“Add ...

  10. 利用Fidder工具抓取App数据包

    第一步:下载神器Fiddler,下载链接: http://fiddler2.com/get-fiddler 下载完成之后,傻瓜式的安装一下了! 第二步:设置Fiddler打开Fiddler,     ...