线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积。常见的有如下分解:

LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵

QR分解:

秩分解:A=CD  ,  A是m×n矩阵,C是m×4矩阵,D是4×n矩阵。

奇异值分解:A=UDVT

谱分解:

在求解线性方程组中,一个核心的问题就是矩阵的LU分解,我们将一个矩阵A分解为两个更加简单的矩阵的复合LU,其中L是下三角矩阵,U是阶梯形矩阵。下三角矩阵和上三角矩阵具有非常良好的性质:Lx=y 或者Ux=y 很容易求解。

问题1.对于任意的矩阵A,是否存在LU分解?

定理:如果A行等价于阶梯形矩阵U,那么(EnEn-1......E1)A=U,其中的Ei,i=1,2,.....,n是高斯消去矩阵,他们都是下三角矩阵,并且都可逆。

这个定理告诉我们三件事:

1.并不是所有的矩阵都有LU分解的。

2.A=LU=(EnEn-1......E1)-1U=(E1-1E2-1.....En-1)U。

3.这个定理还给出了求解矩阵A-1的一种方法。

数值算法1.Gauss消去

用Gauss消去法将矩阵A行变换为U:

用Gauss消去矩阵将A行变换为U:

数值算法2.Gauss-jardon

过程和Gauss-jardon基本一致,之不多在选择完最大元之后,将其化为1,这样就可以通过乘以一个倍数来消去其他行了。

选择主元

当对某一列进行Gauss消去时,一般都是选择这一列中绝对值最大的一个元素作为主元,当然这会进行行交换。其好处有一下几点:

1.在Gauss会代的过程中,不会出现除数为0的情况。

2.减少误差传播,这主要是因为乘数小于等于1.

(为何乘数小于等于1,如果选择这一列中绝对值最大的一个元素作为主元,我们假设这个元素是a,那么乘数等于-b/a,此时|b/a|<=1)。

为什么不用绝对值最小的元素做主元?易知此时乘数的绝对值大于等于1,会增加误差的传播累计。

为什么应该避免用接近于0的数做主元?此时乘数可能非常大,参加如下例子:

matlab 求解线性方程组之LU分解的更多相关文章

  1. [Matlab]求解线性方程组

    转自:http://silencethinking.blog.163.com/blog/static/911490562008928105813169/ AX=B或XA=B在MATLAB中,求解线性方 ...

  2. matlab实现高斯消去法、LU分解

    朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...

  3. 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...

  4. matlab 求解线性方程组之范数

    1.赋范线性空间和内积空间 在线性代数的初级教材里,一般是在向量空间中定义内积,然后再由内积来导出范数,比如在n维实向量空间中: |x||=√<x,x> 在线性代数的高级教材中,一般是将内 ...

  5. 矩阵LU分解分块算法实现

    本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...

  6. LU分解(1)

    1/6 LU 分解          LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵.对应的matlab代码如下: function[L, U] =zlu(A) % ZLU ...

  7. MATLAB矩阵的LU分解及在解线性方程组中的应用

    作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...

  8. matlab中求解线性方程组的rref函数

    摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...

  9. 矩阵LU分解的MATLAB与C++实现

    一:矩阵LU分解 矩阵的LU分解目的是将一个非奇异矩阵\(A\)分解成\(A=LU\)的形式,其中\(L\)是一个主对角线为\(1\)的下三角矩阵:\(U\)是一个上三角矩阵. 比如\(A= \beg ...

随机推荐

  1. c#在字符串中计算加减乘除...

                DataTable dt = new DataTable();             Response.Write(dt.Compute("1+1*5", ...

  2. zabbix自定义key

    zabbix自定义key 1.修改客户端配置文件 #vi /opt/zabbix/etc/zabbix_agentd.conf Include=/opt/zabbix/etc/zabbix_agent ...

  3. Mac 使用Sublime Text 3 搭建C开发环境

    Sublime Text 3  (安装包,注册码 ,汉化包) 1)工具-编译系统-新建编译器 { "cmd" : ["gcc -o ${file_base_name} $ ...

  4. git 命令熟悉

    1. git clone +ssh 地址=将远程代码download 到本地:要在根目录执行这个操作 2.查看所有分支:git branch -a (当前分支前带星号) 3.切换到某个分支:git c ...

  5. html5 canvas 实现倒计时 功能

    function showTime(a) { var b = { id: "showtime", //canvasid x: 60, //中心点坐标 X轴; y: 60, //中心 ...

  6. 【Android】设置android:maxLines="1"后,android:imeOptions="actionSearch"失效

    android:singleLine在API LEVEL 3已经废弃,可以用android:maxLines="1"代替. 但是测试的时候发现设置android:maxLines= ...

  7. GridView模版列中设置

    在GridView模版列中设置如下<asp:TemplateField HeaderText="删除">    <ItemTemplate>         ...

  8. [原创]MvvmLight中用IDialogService替代DialogMessage的用法

    在新版的MvvmLight中,DialogMessage被标注为已过时,需要用IDialogService来替代,IDialogService的具体用法如下: 先在主窗体中实现IDialogServi ...

  9. Java_File类讲解_打印目录树状结构_递归算法

    package cn.xiaocangtian.testFile; import java.io.File; public class FileTree { public static void ma ...

  10. js变量及其作用域(附例子及讲解)

    Javascript和Java.C这些语言不同,它是一种无类型.弱检测的语言.它对变量的定义并不需要声明变量类型,我们只要通过赋值的形式,可以将各种类型的数据赋值给同一个变量   工具/原料   Ch ...