BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*
BZOJ1801 Ahoi2009 chess 中国象棋
Description
在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.
Input
一行包含两个整数N,M,中间用空格分开.
Output
输出所有的方案数,由于值比较大,输出其mod 9999973
Sample Input
1 3
Sample Output
7
HINT
除了在3个格子中都放满炮的的情况外,其它的都可以.
100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6
不难发现每行每列最多只有2个棋子
考虑DP,dpi,j,kdp_{i,j,k}dpi,j,k表示i行中一共有j列有一个,k列有两个
然后我们考虑这一行选多少
- 当前行不选
dpi,j,k=dpi−1,j,k - 当前行选一个
- 选原来是0个棋子dp(i,j,k)+=dp(i−1,j−1,k)∗c(n−k−j+1,1)(1≤j)
- 选原来是1个棋子dp(i,j,k)+=dp(i−1,j+1,k−1)∗c(j+1,1)(1≤k,j≤m−1)
- 当前行选两个
- 选两个原来是0的dp(i,j,k)+=dp(i−1,j−2,k)*c(m-j-k+1,2)(2≤j)
- 选两个原来是1的dp(i,j,k)+=dp(i−1,j+2,k−2)*c(j+2,2)(2≤k,j≤m−2)
- 选一个是1一个是0 dp(i,j,k)+=dp(i−1,j,k−1)*j*(m-j-k+1)(1≤j,1≤k(要保证原来有1))
然后就可以进行转移了
#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
#define N 110
#define LL long long
#define Mod 9999973
LL c[N][N];
LL dp[N][N][N]={};
int n,m;
void getc(){
fu(i,,N-)c[i][]=;
fu(i,,N-)
fu(j,,i)c[i][j]=(c[i-][j]+c[i-][j-])%Mod;
}
LL mul(LL a,LL b){return a*b%Mod;}
int main(){
getc();
dp[][][]=;
scanf("%d%d",&n,&m);
if(n<m)swap(n,m);
fu(i,,n)
fu(j,,m)
fu(k,,m-j){
dp[i][j][k]=dp[i-][j][k];
if(j)dp[i][j][k]+=mul(dp[i-][j-][k],c[m-j-k+][]);
if(j&&k)dp[i][j][k]+=mul(dp[i-][j][k-],mul(j,m-j-k+));
if(j>=)dp[i][j][k]+=mul(dp[i-][j-][k],c[m-j-k+][]);
if(k>=&&j<=m-)dp[i][j][k]+=mul(dp[i-][j+][k-],c[j+][]);
if(k>=&&j<=m-)dp[i][j][k]+=mul(dp[i-][j+][k-],c[j+][]);
dp[i][j][k]%=Mod;
}
int ans=;
fu(i,,m)
fu(j,,m-i)
ans=(ans+dp[n][i][j])%Mod;
printf("%d",ans);
return ;
}
BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*的更多相关文章
- BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]
http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...
- bzoj1801: [Ahoi2009]chess 中国象棋 dp
题意:在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 题解:dp[i][j][k]表示到了第i行,有j列 ...
- BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)
题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...
- 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP
[BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...
- bzoj1801: [Ahoi2009]chess 中国象棋(DP)
1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...
- BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )
dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...
- [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- BZOJ1801 [Ahoi2009]chess 中国象棋 【dp】
题目 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. 输入格式 一行包含两个整数N,M,中间用空格分开. ...
- BZOJ1801 [Ahoi2009]chess 中国象棋 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1801 题意概括 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请 ...
随机推荐
- npm install 报错 ECONNREFUSED
在window环境下,使用npm install 命令安装任何框架,都会报如下的错误 error code ECONNREFUSED error errno ECONNREFUSED error Fe ...
- vue的seo方案 prerender-seo-plugin
利用vue cli 3.0安装脚手架.记住:勾选vue-router. 在vue.config.js里添加配置: 2, var path = require('path') 3, const Prer ...
- 2-3 sshd服务---暴力破解应对策略
sshd服务暴力破解步骤 sshd暴力破解方法 防止暴力破解调优 1. 变更默认端口 2. 变更root用户 3. 日志监控-->防止暴力破解(fail2ban应用) fail2ban详解 ...
- JWT(JSON Web Token) Java与.Net简单编码实现
参考 JWT(JSON WEB TOKENS)-一种无状态的认证机制 基于Token的WEB后台认证机制 各种语言版本的基于HMAC-SHA256的base64加密 Java与.Net实现实现 // ...
- js排序算法01——冒泡排序
在codewars上面刷题卡住刷不下去了,意识到自己算法方面的不足,准备写一些算法方面的文章,此为一. 冒泡排序是很常见简单的算法了,每次比较任何两个相邻的项,如果第一个比第二个大,则交换他们,就像气 ...
- Kubernetes 1.5.3 部署
> kubernetes 1.5.3, 配置文档 # 1 初始化环境 ## 1.1 环境: | 节 点 | I P ||--------|-------------||no ...
- Fast Walsh-Hadamard Transform
这玩意最近经常出现额…… FFT解决的问题是\[C_{k}=\sum_{i+j=k}A_i \cdot B_j\] 其中\(A\).\(B\).\(C\)是三个列向量. 而FWHT是将\(\sum\) ...
- vue创建组件
vue创建组件是很容易的: js: Vue.component("component-item",{ //component-item就是我们在HTML页面上引用的组件,它会在 ...
- nodejs利用express操作mysql增删改查
如果不知道怎么连接数据库的请看http://www.cnblogs.com/complete94/p/6714757.html 我当大家都知道怎么连接数据库了,那么 我们开始吧 var express ...
- ZOJ 2971 Give Me the Number (模拟,字符数组的清空+map)
Give Me the Number Time Limit: 2 Seconds Memory Limit: 65536 KB Numbers in English are written ...