BZOJ1227 SDOI2009 虔诚的墓主人


Description

小W 是一片新造公墓的管理人。公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的正上、正下、正左、正右都有恰好k 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input

第一行包含两个用空格分隔的正整数N 和M,表示公墓的宽和长,因此这个矩形公墓共有(N+1) ×(M+1)个格点,左下角的坐标为(0, 0),右上角的坐标为(N, M)。第二行包含一个正整数W,表示公墓中常青树的个数。第三行起共W 行,每行包含两个用空格分隔的非负整数xi和yi,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数k,意义如题目所示。

Output

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对2,147,483,648 取模。

Sample Input

5 6
13
0 2
0 3
1 2
1 3
2 0
2 1
2 4
2 5
2 6
3 2
3 3
4 3
5 2
2

Sample Output

6

HINT

图中,以墓地(2, 2)和(2, 3)为中心的十字架各有3个,即它们的虔诚度均为3。其他墓地的虔诚度为0。
所有数据满足1 ≤ N, M ≤ 1,000,000,000,0 ≤ xi ≤ N,0 ≤ yi ≤ M,1 ≤ W ≤ 100,000, 1 ≤ k ≤ 10。存在50%的数据,满足1 ≤ k ≤ 2。存在25%的数据,满足1 ≤ W ≤ 10000。
注意:”恰好有k颗树“,这里的恰好不是有且只有,而是从>=k的树中恰好选k棵


思路

首先离散化是肯定的,很容易证明如果在原图中存在的答案一定存在于离散化后的点上

然后我们考虑对这个东西进行处理

首先对于单独的一个位置[x,y],我们是可以算出四个值li,ri,ui,di分别表示以这个点为中心上下左右分别有多少个点有答案,所以我们考虑扫描线,每次统计一个区间的答案

但是我们又发现对于任何两个点[x1,y1][x2,y2]当满足y1=y2​的时候对于任何的xk∈(x1,x2),都存在lx,rx​相等
所以我们每一次只需要考虑一条线段就好了,同时我们维护需要维护的是一个区间的每个位置的C{ui,k}*C{di,k}​,在枚举线段的时候直接累加进去就可以了,同时记着把上一次的贡献给删掉,不然会后果很严重


然后又一个小技巧,因为这里是对2,147,483,648 取模,所以直接自然溢出就自动取模了


#include<bits/stdc++.h>
using namespace std;
#define LL unsigned int
#define N 1000010
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
#define lb(x) (x&(-x))
struct Node{int x,y;}p[N];
int n,m,w,k;
int prex[N],prey[N],sum[N];
int up[N],down[N];
LL t[N],c[N][];
vector<int> v[N];
bool cmp(Node a,Node b){
if(a.y==b.y)return a.x<b.x;
return a.y<b.y;
}
void add(int x,LL vl){for(;x<N;x+=lb(x))t[x]+=vl;}
LL query(int x){LL res=;for(;x;x-=lb(x))res+=t[x];return res;}
LL query(int l,int r){return query(r)-query(l-);}
void init(){
int len=max(n,m);
fu(i,,len)c[i][]=c[i][i]=;
fu(i,,len)
fu(j,,k)
c[i][j]=c[i-][j]+c[i-][j-];
}
int main(){
scanf("%d%d%d",&n,&m,&w);
fu(i,,w){
scanf("%d%d",&p[i].x,&p[i].y);
prex[i]=p[i].x;
prey[i]=p[i].y;
}
scanf("%d",&k);
sort(prex+,prex+w+);
sort(prey+,prey+w+);
int pre_x=unique(prex+,prex+w+)-prex-;
int pre_y=unique(prey+,prey+w+)-prey-;
n=pre_x;m=pre_y;
sort(p+,p+w+,cmp);
fu(i,,w){
p[i].x=lower_bound(prex+,prex+n+,p[i].x)-prex;
p[i].y=lower_bound(prey+,prey+m+,p[i].y)-prey;
v[p[i].y].push_back(i);
}
init();
fu(i,,n)sum[i]=;fd(i,w,)up[i]=sum[p[i].x],sum[p[i].x]++;
fu(i,,n)sum[i]=;fu(i,,w)down[i]=sum[p[i].x],sum[p[i].x]++;
LL ans=;
fu(i,,m){
int len=v[i].size();
fu(j,,len-){
int id=v[i][j];
add(p[id].x,c[up[id]][k]*c[down[id]+][k]-c[up[id]+][k]*c[down[id]][k]);
if(j)ans+=c[j][k]*c[len-j][k]*query(p[v[i][j-]].x+,p[id].x-);
}
}
printf("%d",ans&);
return ;
}

BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*的更多相关文章

  1. [luogu2154 SDOI2009] 虔诚的墓主人(树状数组+组合数)

    传送门 Solution 显然每个点的权值可以由当前点上下左右的树的数量用组合数\(O(1)\)求出,但这样枚举会T 那么我们考虑一段连续区间,对于一行中两个常青树中间的部分左右树的数量一定,我们可用 ...

  2. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  3. P2154 [SDOI2009]虔诚的墓主人 树状数组

    https://www.luogu.org/problemnew/show/P2154 题意 在一个坐标系中,有w(1e5)个点,这个图中空点的权值是正上,正下,正左,正右各取k个的排列组合情况.计算 ...

  4. BZOJ-1227 虔诚的墓主人 树状数组+离散化+组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec Memory Limit: 259 MB Submit: 914 Solved: 431 [Submit][Statu ...

  5. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  6. hdu 1541/poj 2352:Stars(树状数组,经典题)

    Stars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  7. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  8. bzoj1227: [SDOI2009]虔诚的墓主人(树状数组,组合数)

    传送门 首先,对于每一块墓地,如果上下左右各有$a,b,c,d$棵树,那么总的虔诚度就是$C_k^a*C_k^b*C_k^c*C_k^d$ 那么我们先把所有的点都给离散,然后按$x$为第一关键字,$y ...

  9. BZOJ1227 [SDOI2009]虔诚的墓主人 【树状数组】

    题目 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地.当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地.为 ...

随机推荐

  1. geoserver源码学习与扩展——增加服务接口

    参看:http://www.cnblogs.com/sillyemperor/archive/2011/01/11/1929420.html 上文写的很详细了.

  2. C# 人民币转成大写

    /// <summary> /// 转换人民币大小金额 /// </summary> /// <param name="num">金额</ ...

  3. SQL优化- in和not in

    in不会导致索引失效,但最终数据库会将in语句解析为or语句,eg: select * from T_MAIN_PROCESS t where t.audit_status_code in ('05' ...

  4. Spring Boot技术栈博客笔记(1)

    要实现的核心功能 用户管理 安全设置 博客管理 评论管理 点赞管理 分类管理 标签管理 首页搜索 核心技术 数据存储 随着spring3发布以来,spring团队减少使用xml配置的使用,采用大量约定 ...

  5. Git常用命令和Git团队使用规范指南

    转自:https://wsgzao.github.io/post/git/ 前言 在2005年的某一天,Linux之父Linus Torvalds 发布了他的又一个里程碑作品——Git.它的出现改变了 ...

  6. 工作流引擎Activiti使用总结(转)

    1.简单介工作流引擎与Activiti 对于工作流引擎的解释请参考百度百科:工作流引擎 1.1 我与工作流引擎 在第一家公司工作的时候主要任务就是开发OA系统,当然基本都是有工作流的支持,不过当时使用 ...

  7. Java subList的使用

    1. 在看<阿里巴巴java编程手册的时候>有如下强制约束 顺便学了一下subList. java.util.List中有一个subList方法,用来返回一个list的一部分的视图. Li ...

  8. 创建一个最简单的SpringBoot应用

    已经来实习了一段时间了,从开始接触到SpringBoot框架到现在一直都感觉SpringBoot框架实在是为我们带来了巨大遍历之处,之前一直在用并没有总结一下,现在有空从零开始写点东西,也算是对基础的 ...

  9. word2016_统计字数

    统计字数 审阅->字数统计

  10. 搭建多master的saltstack环境

    0.16.0版本的发布,带来了minion可以连接多Master的特性. 这种方式称为多master( multi-master )配置, 使环境中的SaltStack冗余.在这种配置下,Salt M ...