PCA最小平方误差理论推导

PCA求解其实是寻找最佳投影方向,即多个方向的标准正交基构成一个超平面。

理论思想:在高维空间中,我们实际上是要找到一个d维超平面,使得数据点到这个超平面的距离平方和最小

假设\(x_k\)表示p维空间的k个点,\(z_k\)表示\(x_k\)在超平面D上的投影向量,\(W = {w_1,w_2,...,w_d}\)为D维空间的标准正交基,即PCA最小平方误差理论转换为如下优化问题\[z_k = \sum_{i=1}^d (w_i^T x_k)w_i---(1)\]
\[argmin \sum_{i=1}^k||x_k - z_k||_2^2\]
\[s.t. w_i^Tw_j = p(当i==j时p=1,否则p=0)\]

注:\(w_i^Tx_k\)为x_k在w_i基向量的投影长度,\(w_i^Tx_kw_i\)为w_i基向量的坐标值

求解:

\(L = (x_k - z_k)^T(x_k-z_k)\)

\(L= x_k^Tx_k - x_k^Tz_k - z_k^Tx_k + z_k^Tz_k\)

由于向量内积性质\(x_k^Tz_k = z_k^Tx_k\)

\(L = x_k^Tx_k - 2x_k^Tz_k + z_k^Tz_k\)

将(1)带入得\[x_k^Tz_k = \sum_{i=1}^dw_i^Tx_kx_k^Tw_i\]

\[z_k^Tz_k = \sum_{i=1}^d\sum_{j=1}^d(w_i^Tx_kw_i)^T(w_j^Tx_kw_j)\]

根据约束条件s.t.得\[z_k^Tz_k = \sum_{i=1}^dw_i^Tx_k^Tx_kw_i\]

\[L =x_k^Tx_k - \sum_{i=1}^dw_i^Tx_kx_k^Tw_i\]

根据奇异值分解\[\sum_{i=1}^dw_i^Tx_kx_k^Tw_i = tr(W^Tx_k^Tx_kW)\]

\[L =argmin\sum_{i=1}^kx_k^Tx_k - tr(W^Tx_k^Tx_kW) = argmin\sum_{i=1}^k- tr(W^Tx_k^Tx_kW) + C\]

等价于带约束得优化问题:\[argmaxtr(W^TXX^TW)\]
\[s.t. W^TW = I\]

最佳超平面W与最大方差法求解的最佳投影方向一致,即协方差矩阵的最大特征值所对应的特征向量,差别仅是协方差矩阵\(\xi\)的一个倍数

定理

\[argmin\phi(W,Z|X) = tr((X-W^TZ)^T(X-W^TZ)) = ||X-W^TZ||_F^2\]
\[s.t.W^TW=I_q\]

注:X为(n,p),Z为(n,q),q < p,w为(p,q)

该定理表达的意思也就是平方差理论,将降维后的矩阵通过W^T投影回去,再与X计算最小平方差,值越小说明信息损失越少

\(\phi\)目标函数最小时,W为X的前q个特征向量矩阵且\(Z=W^TX\)

以上优化可以通过拉格朗日对偶问题求得,最终也会得到\[argmaxtr(W^TXX^TW)\]
\[s.t. W^TW = I\]

PCA最小平方误差理论推导的更多相关文章

  1. 数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归

    # coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据 ...

  2. PCA算法的最小平方误差解释

    PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点 ...

  3. 【降维】主成分分析PCA推导

    本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最 ...

  4. 主成分分析(PCA)与线性判别分析(LDA)

    主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...

  5. PCA降维-最大,最小方差解释

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/ ...

  6. 降维【PCA & SVD】

    PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数 ...

  7. PCA与ICA

    关于机器学习理论方面的研究,最好阅读英文原版的学术论文.PCA主要作用是数据降维,而ICA主要作用是盲信号分离.在讲述理论依据之前,先思考以下几个问题:真实的数据训练总是存在以下几个问题: ①特征冗余 ...

  8. PCA 主成分分析(Principal components analysis )

    问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列, ...

  9. 一篇深入剖析PCA的好文

    主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这 ...

随机推荐

  1. 自学Java测试代码二String, StringBuffer

    2017-08-23 10:38:01 writer:pprp package test; import java.util.*; public class test2 { public static ...

  2. python的变量,对象的内存地址以及参数传递过程

    作为一个由c/c++转过来的菜鸟,刚接触Python的变量的时候很不适应,应为他的行为很像指针,void* ,不知道大家有没有这样的感觉.其实Python是以数据为本,变量可以理解为标签.作为c/c+ ...

  3. Class 的继承

    简介 Class 可以通过extends关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多. class Point { } class ColorPoint extends P ...

  4. Java网络编程学习A轮_02_抓包分析TCP三次握手过程

    参考资料: https://huoding.com/2013/11/21/299 https://hpbn.co/building-blocks-of-tcp/#three-way-handshake ...

  5. 设计模式--抽象工厂模式C++实现

    抽象工厂模式C++实现 1定义 为创建一组相关或者依赖的对象提供一个接口,且无需指定他们的具体类 2类图 3实现 class AbstractProduct { protected: Abstract ...

  6. 17.并发容器之ThreadLocal

    1. ThreadLocal的简介 在多线程编程中通常解决线程安全的问题我们会利用synchronzed或者lock控制线程对临界区资源的同步顺序从而解决线程安全的问题,但是这种加锁的方式会让未获取到 ...

  7. Java SHA256/Base64转.NET(C#)实现---(华为云云市场.NET版本加密方式)

    前言: 工作需要,对接华为云应用市场的 API 接口,由于维护团队都是 .NET 所以用 .NET 来开发. 简单了解一下 SHA256 加密算法,本质就是一个 Hash,与 MD5 相比就是计算量大 ...

  8. java和python互相调用

      java和python互相调用  作者:xuaijun  日期:2017.1.1 python作为一种脚本语言,大量用于测试用例和测试代码的编写,尤其适用于交互式业务场景.实际应用中,很多网管系统 ...

  9. python面试题包含基础和Linux操作以及数据库相关

    今天面试了一家公司,感觉表现的不是很好,记录一下面试的试题. python基础部分 python 是一门什么样的语言面向对象的语言有那些,python的面向对象和Java面向对象的区别 Python是 ...

  10. C++:创建线程初试

    1.使用CreatThread创建 #include <iostream> #include <Windows.h> using namespace std; /* 创建一个线 ...