目  录

1、顺序表. 1

Seqlist.h 1

Test.cpp 6

2、单链表. 8

ListNode.h 8

SingleList.h 10

test.cpp 20

3、双向链表. 22

NodeList.h 22

DoubleList.h 24

Test.cpp 34

4、循环链表. 36

ListNode.h 36

CircularList.h 37

Test.cpp 47

5、顺序栈. 49

SeqStack.h 49

Test.cpp 54

6、链式栈. 55

StackNode.h 55

LinkStack.h 56

Test.cpp 60

7、顺序队列. 62

SeqQueue.h 63

Test.cpp 68

8、链式队列. 70

QueueNode.h 70

LinkQueue.h 71

Test.cpp 75

9、优先级队列. 77

QueueNode.h 77

Compare.h 78

PriorityQueue.h 80

Test.cpp 85

10、串. 88

MyString.h 88

MyString.cpp 90

test.cpp 101

11、二叉树. 104

BinTreeNode.h 104

BinaryTree.h 112

Test.cpp 124

12、线索二叉树. 126

ThreadNode.h 126

ThreadTree.h 128

ThreadInorderIterator.h 128

test.cpp 139

13、堆. 140

MinHeap.h 140

test.cpp 147

14、哈夫曼树. 149

BinTreeNode.h 149

BinaryTree.h 151

MinHeap.h 156

Huffman.h 161

Test.cpp 163

15、树. 164

QueueNode.h 164

LinkQueue.h 165

TreeNode.h 169

Tree.h 170

test.cpp 187

16、B+树. 189

BTreeNode.h 189

BTree.h 192

test.cpp 215

17、图. 217

MinHeap.h 217

Edge.h 222

Vertex.h 223

Graph.h 224

test.cpp 246

18、排序. 249

Data.h 249

QueueNode.h 255

LinkQueue.h 259

Sort.h 263

test.cpp 278

1、顺序表

Seqlist.h

const int DefaultSize=100;

 

template <typename Type> class SeqList{

public:

   SeqList(int sz=DefaultSize)

     :m_nmaxsize(sz),m_ncurrentsize(-1){

     if(sz>0){

        m_elements=new Type[m_nmaxsize];

     }

   }

   ~SeqList(){

     delete[] m_elements;

   }

   int Length() const{            //get the length

     return m_ncurrentsize+1;

   }

   int Find(Type x) const;          //find the position of x

   int IsElement(Type x) const;     //is it in the list

   int Insert(Type x,int i);      //insert data

   int Remove(Type x);            //delete data

   int IsEmpty(){

     return m_ncurrentsize==-1;

   }

   int IsFull(){

     return m_ncurrentsize==m_nmaxsize-1;

   }

   Type Get(int i){            //get the ith data

     return i<0||i>m_ncurrentsize?(cout<<"can't find the element"<<endl,0):m_elements[i];

   }

   void Print();

 

private:

   Type *m_elements;

   const int m_nmaxsize;

   int m_ncurrentsize;

};

 

template <typename Type> int SeqList<Type>::Find(Type x) const{

   for(int i=0;i<m_ncurrentsize;i++)

     if(m_elements[i]==x)

        return i;

   cout<<"can't find the element you want to find"<<endl;

   return -1;

}

 

template <typename Type> int SeqList<Type>::IsElement(Type x) const{

   if(Find(x)==-1)

     return 0;

   return 1;

}

 

template <typename Type> int SeqList<Type>::Insert(Type x, int i){

   if(i<0||i>m_ncurrentsize+1||m_ncurrentsize==m_nmaxsize-1){

     cout<<"the operate is illegal"<<endl;

     return 0;

   }

   m_ncurrentsize++;

   for(int j=m_ncurrentsize;j>i;j--){

     m_elements[j]=m_elements[j-1];

   }

   m_elements[i]=x;

   return 1;

}

 

template <typename Type> int SeqList<Type>::Remove(Type x){

   int size=m_ncurrentsize;

   for(int i=0;i<m_ncurrentsize;){

     if(m_elements[i]==x){

        for(int j=i;j<m_ncurrentsize;j++){

          m_elements[j]=m_elements[j+1];

        }

        m_ncurrentsize--;

        continue;

     }

     i++;

   }

   if(size==m_ncurrentsize){

     cout<<"can't find the element you want to remove"<<endl;

     return 0;

   }

   return 1;

}

 

template <typename Type> void SeqList<Type>::Print(){

   for(int i=0;i<=m_ncurrentsize;i++)

     cout<<i+1<<":\t"<<m_elements[i]<<endl;

   cout<<endl<<endl;

}

 

Test.cpp

 

#include <iostream>

#include "SeqList.h"

 

using namespace std;

 

int main()

{

   SeqList<int> test(15);

   int array[15]={2,5,8,1,9,9,7,6,4,3,2,9,7,7,9};

   for(int i=0;i<15;i++){

     test.Insert(array[i],0);

}

   test.Insert(1,0);

   cout<<(test.Find(0)?"can't be found ":"Be found ")<< 0 << endl<<endl;

   test.Remove(7);

   test.Print();

   test.Remove(9);

   test.Print();

   test.Remove(0);

   test.Print();

   return 0;

}

2、 单链表

ListNode.h

template<typename Type> class SingleList;

 

template<typename Type> class ListNode{

private:

   friend typename SingleList<Type>;

 

   ListNode():m_pnext(NULL){}

   ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}

   ~ListNode(){

     m_pnext=NULL;

   }

 

public:

   Type GetData();

   friend ostream& operator<< <Type>(ostream& ,ListNode<Type>&);

 

private:

   Type m_data;

   ListNode *m_pnext;

};

 

template<typename Type> Type ListNode<Type>::GetData(){

   return this->m_data;

}

 

template<typename Type> ostream& operator<<(ostream& os,ListNode<Type>& out){

   os<<out.m_data;

   return os;

}

 

 

SingleList.h

 

#include "ListNode.h"

 

template<typename Type> class SingleList{

public:

   SingleList():head(new ListNode<Type>()){}

   ~SingleList(){

     MakeEmpty();

     delete head;

   }

 

public:

   void MakeEmpty();                       //make the list empty

   int Length();                           //get the length

   ListNode<Type> *Find(Type value,int n); //find thd nth data which is equal to value

   ListNode<Type> *Find(int n);            //find the nth data

   bool Insert(Type item,int n=0);         //insert the data in the nth position

   Type Remove(int n=0);                   //remove the nth data

   bool RemoveAll(Type item);              //remove all the data which is equal to item

   Type Get(int n);                        //get the nth data

   void Print();                           //print the list

 

private:

   ListNode<Type> *head;

};

 

template<typename Type> void SingleList<Type>::MakeEmpty(){

   ListNode<Type> *pdel;

   while(head->m_pnext!=NULL){

     pdel=head->m_pnext;

     head->m_pnext=pdel->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> int SingleList<Type>::Length(){

   ListNode<Type> *pmove=head->m_pnext;

   int count=0;

   while(pmove!=NULL){

     pmove=pmove->m_pnext;

     count++;

   }

   return count;

}

 

template<typename Type> ListNode<Type>* SingleList<Type>::Find(int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     return NULL;

   }

   ListNode<Type> *pmove=head->m_pnext;

   for(int i=0;i<n&&pmove;i++){

     pmove=pmove->m_pnext;

   }

   if(pmove==NULL){

     cout<<"The n is out of boundary"<<endl;

     return NULL;

   }

   return pmove;

}

 

template<typename Type> ListNode<Type>* SingleList<Type>::Find(Type value,int n){

   if(n<1){

     cout<<"The n is illegal"<<endl;

     return NULL;

   }

   ListNode<Type> *pmove=head;

   int count=0;

   while(count!=n&&pmove){

     pmove=pmove->m_pnext;

     if(pmove->m_data==value){

        count++;

     }

 

   }

   if(pmove==NULL){

     cout<<"can't find the element"<<endl;

     return NULL;

   }

   return pmove;

}

 

template<typename Type> bool SingleList<Type>::Insert(Type item, int n){

   if(n<0){

     cout<<"The n is illegal"<<endl;

     return 0;

   }

   ListNode<Type> *pmove=head;

   ListNode<Type> *pnode=new ListNode<Type>(item);

   if(pnode==NULL){

     cout<<"Application error!"<<endl;

     return 0;

   }

   for(int i=0;i<n&&pmove;i++){

     pmove=pmove->m_pnext;

   }

   if(pmove==NULL){

     cout<<"the n is illegal"<<endl;

     return 0;

   }

   pnode->m_pnext=pmove->m_pnext;

   pmove->m_pnext=pnode;

   return 1;

}

 

template<typename Type> bool SingleList<Type>::RemoveAll(Type item){

   ListNode<Type> *pmove=head;

   ListNode<Type> *pdel=head->m_pnext;

   while(pdel!=NULL){

     if(pdel->m_data==item){

        pmove->m_pnext=pdel->m_pnext;

        delete pdel;

        pdel=pmove->m_pnext;

        continue;

     }

     pmove=pmove->m_pnext;

     pdel=pdel->m_pnext;

   }

   return 1;

}

 

template<typename Type> Type SingleList<Type>::Remove(int n){

   if(n<0){

     cout<<"can't find the element"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head,*pdel;

   for(int i=0;i<n&&pmove->m_pnext;i++){

     pmove=pmove->m_pnext;

   }

   if(pmove->m_pnext==NULL){

     cout<<"can't find the element"<<endl;

     exit(1);

   }

   pdel=pmove->m_pnext;

   pmove->m_pnext=pdel->m_pnext;

   Type temp=pdel->m_data;

   delete pdel;

   return temp;

}

 

template<typename Type> Type SingleList<Type>::Get(int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head->m_pnext;

   for(int i=0;i<n;i++){

     pmove=pmove->m_pnext;

     if(NULL==pmove){

        cout<<"The n is out of boundary"<<endl;

        exit(1);

     }

   }

   return pmove->m_data;

}

 

template<typename Type> void SingleList<Type>::Print(){

   ListNode<Type> *pmove=head->m_pnext;

   cout<<"head";

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->over"<<endl<<endl<<endl;

}

 

test.cpp

#include <iostream>

using namespace std;

 

#include "SingleList.h"

 

 

int main()

{

   SingleList<int> list;

   for(int i=0;i<20;i++){

     list.Insert(i*3,i);

   }

   for(int i=0;i<5;i++){

     list.Insert(3,i*3);

   }

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   list.Remove(5);

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   list.RemoveAll(3);

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   cout<<"The third element is "<<list.Get(3)<<endl;

 

   cout<<*list.Find(18,1)<<endl;

 

   list.Find(100);

 

   list.MakeEmpty();

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   return 0;

}

 

3、 双向链表

NodeList.h

template<typename Type> class DoublyList;

 

template<typename Type> class ListNode{

private:

   friend class DoublyList<Type>;

   ListNode():m_pprior(NULL),m_pnext(NULL){}

   ListNode(const Type item,ListNode<Type> *prior=NULL,ListNode<Type> *next=NULL)

     :m_data(item),m_pprior(prior),m_pnext(next){}

   ~ListNode(){

     m_pprior=NULL;

     m_pnext=NULL;

   }

public:

   Type GetData();

private:

   Type m_data;

   ListNode *m_pprior;

   ListNode *m_pnext;

};

 

template<typename Type> Type ListNode<Type>::GetData(){

   return this->m_data;

}

 

DoubleList.h

#include "ListNode.h"

 

template<typename Type> class DoublyList{

public:

   DoublyList():head(new ListNode<Type>()){    //the head node point to itself

     head->m_pprior=head;

     head->m_pnext=head;

   }

   ~DoublyList(){

     MakeEmpty();

     delete head;

   }

 

public:

   void MakeEmpty();   //make the list empty

   int Length();       //get the length of the list

   ListNode<Type> *Find(int n=0);  //find the nth data

   ListNode<Type> * FindData(Type item);   //find the data which is equal to item

   bool Insert(Type item,int n=0);     //insert item in the nth data

   Type Remove(int n=0);   //delete the nth data

   Type Get(int n=0);      //get the nth data

   void Print();           //print the list

 

private:

   ListNode<Type> *head;

};

 

template<typename Type> void DoublyList<Type>::MakeEmpty(){

   ListNode<Type> *pmove=head->m_pnext,*pdel;

   while(pmove!=head){

     pdel=pmove;

     pmove=pdel->m_pnext;

     delete pdel;

   }

   head->m_pnext=head;

   head->m_pprior=head;

}

 

template<typename Type> int DoublyList<Type>::Length(){

   ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;

   int count=0;

   while(1){

     if(pprior->m_pnext==pnext){

        break;

     }

     if(pprior==pnext&&pprior!=head){

        count++;

        break;

     }

     count+=2;

     pprior=pprior->m_pprior;

     pnext=pnext->m_pnext;

   }

   return count;

}

 

template<typename Type> ListNode<Type>* DoublyList<Type>::Find(int n = 0){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     return NULL;

   }

   ListNode<Type> *pmove=head->m_pnext;

   for(int i=0;i<n;i++){

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        return NULL;

     }

   }

   return pmove;

}

 

template<typename Type> bool DoublyList<Type>::Insert(Type item,int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     return 0;

   }

   ListNode<Type> *newnode=new ListNode<Type>(item),*pmove=head;

   if(newnode==NULL){

     cout<<"Application Erorr!"<<endl;

     exit(1);

   }

   for(int i=0;i<n;i++){   //find the position for insert

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        return 0;

     }

   }

 

    //insert the data

   newnode->m_pnext=pmove->m_pnext;

   newnode->m_pprior=pmove;

   pmove->m_pnext=newnode;

   newnode->m_pnext->m_pprior=newnode;

   return 1;

}

 

template<typename Type> Type DoublyList<Type>::Remove(int n = 0){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head,*pdel;

   for(int i=0;i<n;i++){   //find the position for delete

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        exit(1);

     }

   }

 

    //delete the data

   pdel=pmove;

   pmove->m_pprior->m_pnext=pdel->m_pnext;

   pmove->m_pnext->m_pprior=pdel->m_pprior;

   Type temp=pdel->m_data;

   delete pdel;

   return temp;

}

 

template<typename Type> Type DoublyList<Type>::Get(int n = 0){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head;

   for(int i=0;i<n;i++){

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        exit(1);

     }

   }

   return pmove->m_data;

}

 

template<typename Type> void DoublyList<Type>::Print(){

   ListNode<Type> *pmove=head->m_pnext;

   cout<<"head";

   while(pmove!=head){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->over"<<endl<<endl<<endl;

 

}

 

template<typename Type> ListNode<Type>* DoublyList<Type>::FindData(Type item){

   ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;

   while(pprior->m_pnext!=pnext && pprior!=pnext){ //find the data in the two direction

     if(pprior->m_data==item){

        return pprior;

     }

     if(pnext->m_data==item){

        return pnext;

     }

     pprior=pprior->m_pprior;

     pnext=pnext->m_pnext;

   }

   cout<<"can't find the element"<<endl;

   return NULL;

}

 

Test.cpp

#include <iostream>

#include "DoublyList.h"

 

using namespace std;

 

int main()

{

   DoublyList<int> list;

   for(int i=0;i<20;i++){

     list.Insert(i*3,i);

   }

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

   for(int i=0;i<5;i++){

     list.Insert(3,i*3);

   }

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   list.Remove(5);

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   cout<<list.FindData(54)->GetData()<<endl;

 

   cout<<"The third element is "<<list.Get(3)<<endl;

 

   list.MakeEmpty();

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

 

   return 0;

}

 

4、 循环链表

ListNode.h

template<typename Type> class CircularList;

 

template<typename Type> class ListNode{

private:

   friend class CircularList<Type>;

   ListNode():m_pnext(NULL){}

   ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}

   ~ListNode(){

     m_pnext=NULL;

   }

  

private:

   Type m_data;

   ListNode *m_pnext;

};

 

CircularList.h

#include "ListNode.h"

 

template<typename Type> class CircularList{

public:

   CircularList():head(new ListNode<Type>()){

     head->m_pnext=head;

   }

   ~CircularList(){

     MakeEmpty();

     delete head;

   }

public:

   void MakeEmpty(); //clear the list

   int Length();     //get the length

   ListNode<Type> *Find(Type value,int n);  //find the nth data which is equal to value

   ListNode<Type> *Find(int n);        //find the nth data

   bool Insert(Type item,int n=0);       //insert the data into the nth data of the list

   Type Remove(int n=0);            //delete the nth data

   bool RemoveAll(Type item);          //delete all the datas which are equal to value

   Type Get(int n);  //get the nth data

   void Print();     //print the list

 

private:

   ListNode<Type> *head;

 

};

 

template<typename Type> void CircularList<Type>::MakeEmpty(){

   ListNode<Type> *pdel,*pmove=head;

   while(pmove->m_pnext!=head){

     pdel=pmove->m_pnext;

     pmove->m_pnext=pdel->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> int CircularList<Type>::Length(){

   ListNode<Type> *pmove=head;

   int count=0;

   while(pmove->m_pnext!=head){

     pmove=pmove->m_pnext;

     count++;

   }

   return count;

}

 

template<typename Type> ListNode<Type>* CircularList<Type>::Find(int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     return NULL;

   }

   ListNode<Type> *pmove=head->m_pnext;

   for(int i=0;i<n&&pmove!=head;i++){

     pmove=pmove->m_pnext;

   }

   if(pmove==head){

     cout<<"The n is out of boundary"<<endl;

     return NULL;

   }

   return pmove;

}

 

template<typename Type> ListNode<Type>* CircularList<Type>::Find(Type value,int n){

   if(n<1){

     cout<<"The n is illegal"<<endl;

     return NULL;

   }

   ListNode<Type> *pmove=head;

   int count=0;

   while(count!=n){

     pmove=pmove->m_pnext;

     if(pmove->m_data==value){

        count++;

     }

     if(pmove==head){

        cout<<"can't find the element"<<endl;

        return NULL;

     }

   }

   return pmove;

}

 

template<typename Type> bool CircularList<Type>::Insert(Type item, int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     return 0;

   }

   ListNode<Type> *pmove=head;

   ListNode<Type> *pnode=new ListNode<Type>(item);

   if(pnode==NULL){

     cout<<"Application error!"<<endl;

     exit(1);

   }

   for(int i=0;i<n;i++){

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        return 0;

     }

   }

 

   pnode->m_pnext=pmove->m_pnext;

   pmove->m_pnext=pnode;

   return 1;

}

 

template<typename Type> bool CircularList<Type>::RemoveAll(Type item){

   ListNode<Type> *pmove=head;

   ListNode<Type> *pdel=head->m_pnext;

   while(pdel!=head){

     if(pdel->m_data==item){

        pmove->m_pnext=pdel->m_pnext;

        delete pdel;

        pdel=pmove->m_pnext;

        continue;

     }

     pmove=pmove->m_pnext;

     pdel=pdel->m_pnext;

   }

   return 1;

}

 

template<typename Type> Type CircularList<Type>::Remove(int n){

   if(n<0){

     cout<<"can't find the element"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head,*pdel;

   for(int i=0;i<n&&pmove->m_pnext!=head;i++){

     pmove=pmove->m_pnext;

   }

   if(pmove->m_pnext==head){

     cout<<"can't find the element"<<endl;

     exit(1);

   }

   pdel=pmove->m_pnext;

   pmove->m_pnext=pdel->m_pnext;

   Type temp=pdel->m_data;

   delete pdel;

   return temp;

}

 

template<typename Type> Type CircularList<Type>::Get(int n){

   if(n<0){

     cout<<"The n is out of boundary"<<endl;

     exit(1);

   }

   ListNode<Type> *pmove=head->m_pnext;

   for(int i=0;i<n;i++){

     pmove=pmove->m_pnext;

     if(pmove==head){

        cout<<"The n is out of boundary"<<endl;

        exit(1);

     }

   }

   return pmove->m_data;

}

 

template<typename Type> void CircularList<Type>::Print(){

   ListNode<Type> *pmove=head->m_pnext;

   cout<<"head";

   while(pmove!=head){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->over"<<endl<<endl<<endl;

}

 

Test.cpp

#include <iostream>

#include "CircularList.h"

 

using namespace std;

 

int main()

{

   CircularList<int> list;

   for(int i=0;i<20;i++){

     list.Insert(i*3,i);

   }

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

   for(int i=0;i<5;i++){

     list.Insert(3,i*3);

   }

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   list.Remove(5);

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   list.RemoveAll(3);

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

   cout<<"The third element is "<<list.Get(3)<<endl;

 

   list.MakeEmpty();

   cout<<"the Length of the list is "<<list.Length()<<endl;

   list.Print();

 

 

   return 0;

}

 

5、 顺序栈

SeqStack.h

template<typename Type> class SeqStack{

public:

   SeqStack(int sz):m_ntop(-1),m_nMaxSize(sz){

     m_pelements=new Type[sz];

     if(m_pelements==NULL){

        cout<<"Application Error!"<<endl;

        exit(1);

     }

   }

   ~SeqStack(){

     delete[] m_pelements;

   }

 

public:

 

   void Push(const Type item); //push data

   Type Pop();                 //pop data

   Type GetTop() const;        //get data

    void Print();               //print the stack

   void MakeEmpty(){           //make the stack empty

     m_ntop=-1;

   }

   bool IsEmpty() const{

     return m_ntop==-1;

   }

   bool IsFull() const{

     return m_ntop==m_nMaxSize-1;

   }

  

 

private:

   int m_ntop;

   Type *m_pelements;

   int m_nMaxSize;

 

};

 

template<typename Type> void SeqStack<Type>::Push(const Type item){

   if(IsFull()){

     cout<<"The stack is full!"<<endl;

     return;

   }

   m_pelements[++m_ntop]=item;

}

 

template<typename Type> Type SeqStack<Type>::Pop(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pelements[m_ntop--];

}

 

template<typename Type> Type SeqStack<Type>::GetTop() const{

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pelements[m_ntop];

}

 

template<typename Type> void SeqStack<Type>::Print(){

   cout<<"bottom";

   for(int i=0;i<=m_ntop;i++){

     cout<<"--->"<<m_pelements[i];

   }

   cout<<"--->top"<<endl<<endl<<endl;

}

 

Test.cpp

 

#include<iostream>

using namespace std;

 

#include "SeqStack.h"

 

int main(){

   SeqStack<int> stack(10);

   int init[10]={1,2,6,9,0,3,8,7,5,4};

   for(int i=0;i<10;i++){

     stack.Push(init[i]);

   }

   stack.Print();

 

   stack.Push(88);

 

   cout<<stack.Pop()<<endl;

   stack.Print();

  

   stack.MakeEmpty();

   stack.Print();

 

   stack.Pop();

   return 0;

}

 

6、 链式栈

StackNode.h

template<typename Type> class LinkStack;

 

template<typename Type> class StackNode{

private:

   friend class LinkStack<Type>;

   StackNode(Type dt,StackNode<Type> *next=NULL):m_data(dt),m_pnext(next){}

 

private:

   Type m_data;

   StackNode<Type> *m_pnext;

};

 

LinkStack.h

#include "StackNode.h"

 

template<typename Type> class LinkStack{

public:

   LinkStack():m_ptop(NULL){}

   ~LinkStack(){

     MakeEmpty();

   }

 

public:

   void MakeEmpty();           //make the stack empty

   void Push(const Type item); //push the data

   Type Pop();                 //pop the data

   Type GetTop() const;        //get the data

    void Print();               //print the stack

       

   bool IsEmpty() const{

     return m_ptop==NULL;

   }

  

private:

   StackNode<Type> *m_ptop;

};

 

template<typename Type> void LinkStack<Type>::MakeEmpty(){

   StackNode<Type> *pmove;

   while(m_ptop!=NULL){

     pmove=m_ptop;

     m_ptop=m_ptop->m_pnext;

     delete pmove;

   }

}

 

template<typename Type> void LinkStack<Type>::Push(const Type item){

   m_ptop=new StackNode<Type>(item,m_ptop);

}

 

template<typename Type> Type LinkStack<Type>::GetTop() const{

   if(IsEmpty()){

     cout<<"There is no elements!"<<endl;

     exit(1);

   }

   return m_ptop->m_data;

}

 

template<typename Type> Type LinkStack<Type>::Pop(){

   if(IsEmpty()){

     cout<<"There is no elements!"<<endl;

     exit(1);

   }

   StackNode<Type> *pdel=m_ptop;

   m_ptop=m_ptop->m_pnext;

   Type temp=pdel->m_data;

   delete pdel;

   return temp;

}

 

template<typename Type> void LinkStack<Type>::Print(){

   StackNode<Type> *pmove=m_ptop;

   cout<<"buttom";

   while(pmove!=NULL){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->top"<<endl<<endl<<endl;

}

 

Test.cpp

 

#include <iostream>

using namespace std;

 

#include "LinkStack.h"

 

int main(){

   LinkStack<int> stack;

   int init[10]={1,3,5,7,4,2,8,0,6,9};

   for(int i=0;i<10;i++){

     stack.Push(init[i]);

   }

   stack.Print();

 

   cout<<stack.Pop()<<endl;

   stack.Print();

  

   cout<<stack.GetTop()<<endl;

   stack.Print();

 

   cout<<stack.Pop()<<endl;

   stack.Print();

 

   stack.MakeEmpty();

   stack.Print();

  

   stack.Pop();

 

 

   return 0;

}

 

7.顺序队列

SeqQueue.h

 

template<typename Type> class SeqQueue{

public:

   SeqQueue(int sz):m_nrear(0),m_nfront(0),m_ncount(0),m_nMaxSize(sz){

     m_pelements=new Type[sz];

     if(m_pelements==NULL){

        cout<<"Application Error!"<<endl;

        exit(1);

     }

   }

   ~SeqQueue(){

     delete[] m_pelements;

   }

   void MakeEmpty();               //make the queue empty

   bool IsEmpty();

   bool IsFull();

   bool Append(const Type item);   //insert data

   Type Delete();                  //delete data

   Type Get();                     //get data

   void Print();                   //print the queue

 

private:

   int m_nrear;

   int m_nfront;

   int m_ncount;

   int m_nMaxSize;

   Type *m_pelements;

  

};

 

template<typename Type> void SeqQueue<Type>::MakeEmpty(){

   this->m_ncount=0;

   this->m_nfront=0;

   this->m_nrear=0;

}

 

template<typename Type> bool SeqQueue<Type>::IsEmpty(){

   return m_ncount==0;

}

 

template<typename Type> bool SeqQueue<Type>::IsFull(){

   return m_ncount==m_nMaxSize;

}

 

template<typename Type> bool SeqQueue<Type>::Append(const Type item){

   if(IsFull()){

     cout<<"The queue is full!"<<endl;

     return 0;

   }

   m_pelements[m_nrear]=item;

   m_nrear=(m_nrear+1)%m_nMaxSize;

   m_ncount++;

   return 1;

}

 

template<typename Type> Type SeqQueue<Type>::Delete(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   Type temp=m_pelements[m_nfront];

   m_nfront=(m_nfront+1)%m_nMaxSize;

   m_ncount--;

   return temp;

}

 

template<typename Type> Type SeqQueue<Type>::Get(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pelements[m_nfront];

}

 

template<typename Type> void SeqQueue<Type>::Print(){

   cout<<"front";

   for(int i=0;i<m_ncount;i++){

     cout<<"--->"<<m_pelements[(m_nfront+i+m_nMaxSize)%m_nMaxSize];

   }

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

Test.cpp

#include <iostream>

using namespace std;

 

#include "SeqQueue.h"

 

int main(){

   SeqQueue<int> queue(10);

   int init[10]={1,6,9,0,2,5,8,3,7,4};

   for(int i=0;i<5;i++){

     queue.Append(init[i]);

   }

   queue.Print();

 

   cout<<queue.Delete()<<endl;

   queue.Print();

 

   for(int i=5;i<10;i++){

     queue.Append(init[i]);

   }

   queue.Print();

 

   cout<<queue.Get()<<endl;

 

   queue.MakeEmpty();

   queue.Print();

 

   queue.Append(1);

   queue.Print();

 

   return 0;

}

 

8、链式队列

QueueNode.h

template<typename Type> class LinkQueue;

 

template<typename Type> class QueueNode{

private:

   friend class LinkQueue<Type>;

   QueueNode(const Type item,QueueNode<Type> *next=NULL)

     :m_data(item),m_pnext(next){}

private:

   Type m_data;

   QueueNode<Type> *m_pnext;

};

 

LinkQueue.h

#include "QueueNode.h"

 

template<typename Type> class LinkQueue{

public:

   LinkQueue():m_prear(NULL),m_pfront(NULL){}

   ~LinkQueue(){

     MakeEmpty();

   }

   void Append(const Type item);   //insert data

   Type Delete();                  //delete data

   Type GetFront();                //get data

   void MakeEmpty();               //make the queue empty

    void Print();                   //print the queue

 

   bool IsEmpty() const{

     return m_pfront==NULL;

   }

 

private:

   QueueNode<Type> *m_prear,*m_pfront;

};

 

template<typename Type> void LinkQueue<Type>::MakeEmpty(){

   QueueNode<Type> *pdel;

   while(m_pfront){

     pdel=m_pfront;

     m_pfront=m_pfront->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> void LinkQueue<Type>::Append(const Type item){

   if(m_pfront==NULL){

     m_pfront=m_prear=new QueueNode<Type>(item);

   }

   else{

     m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

   }

}

 

template<typename Type> Type LinkQueue<Type>::Delete(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   QueueNode<Type> *pdel=m_pfront;

   Type temp=m_pfront->m_data;

   m_pfront=m_pfront->m_pnext;

   delete pdel;

   return temp;

}

 

template<typename Type> Type LinkQueue<Type>::GetFront(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pfront->m_data;

}

 

template<typename Type> void LinkQueue<Type>::Print(){

   QueueNode<Type> *pmove=m_pfront;

   cout<<"front";

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

Test.cpp

#include <iostream>

 

using namespace std;

 

#include "LinkQueue.h"

 

int main(){

   LinkQueue<int> queue;

   int init[10]={1,3,6,8,9,2,0,5,4,7};

 

   for(int i=0;i<10;i++){

     queue.Append(init[i]);

   }

   queue.Print();

 

   queue.Delete();

   queue.Print();

 

   cout<<queue.GetFront()<<endl;

   queue.Print();

 

   queue.MakeEmpty();

   queue.Print();

 

   queue.Delete();

 

   return 0;

}

 

9、优先级队列

QueueNode.h

 

template<typename Type,typename Cmp> class PriorityQueue;

 

template<typename Type,typename Cmp> class QueueNode{

private:

   friend class PriorityQueue<Type,Cmp>;

   QueueNode(const Type item,QueueNode<Type,Cmp> *next=NULL)

     :m_data(item),m_pnext(next){}

private:

   Type m_data;

   QueueNode<Type,Cmp> *m_pnext;

};

 

Compare.h

template<typename Type> class Compare{ //处理一般比较大小

public:

   static bool lt(Type item1,Type item2);

};

 

template<typename Type> bool Compare<Type>::lt(Type item1, Type item2){

   return item1<item2;

}

 

struct SpecialData{

   friend ostream& operator<<(ostream& ,SpecialData &);

   int m_ntenor;

   int m_npir;

};

 

ostream& operator<<(ostream& os,SpecialData &out){

   os<<out.m_ntenor<<"   "<<out.m_npir;

   return os;

}

 

class SpecialCmp{    //处理特殊比较大小,用户可添加适当的类

public:

   static bool lt(SpecialData item1,SpecialData item2);

};

 

bool SpecialCmp::lt(SpecialData item1, SpecialData item2){

   return item1.m_npir<item2.m_npir;

}

 

PriorityQueue.h

#include "QueueNode.h"

#include "Compare.h"

 

template<typename Type,typename Cmp> class PriorityQueue{  //Cmp is Designed for compare

public:

   PriorityQueue():m_prear(NULL),m_pfront(NULL){}

   ~PriorityQueue(){

     MakeEmpty();

   }

 

   void MakeEmpty();               //make the queue empty

   void Append(const Type item);   //insert data

   Type Delete();                  //delete data

   Type GetFront();                //get data

    void Print();                   //print the queue

       

   bool IsEmpty() const{          

     return m_pfront==NULL;

   }

  

 

private:

   QueueNode<Type,Cmp> *m_prear,*m_pfront;

};

 

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::MakeEmpty(){

   QueueNode<Type,Cmp> *pdel;

   while(m_pfront){

     pdel=m_pfront;

     m_pfront=m_pfront->m_pnext;

     delete pdel;

   }

}

 

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Append(const Type item){

   if(m_pfront==NULL){

     m_pfront=m_prear=new QueueNode<Type,Cmp>(item);

   }

   else{

     m_prear=m_prear->m_pnext=new QueueNode<Type,Cmp>(item);

   }

}

 

template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::Delete(){

   if(IsEmpty()){

     cout<<"There is no elements!"<<endl;

     exit(1);

   }

   QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront;

   while(pmove->m_pnext){  //get the minimize priority's data

 

        //cmp:: lt is used for compare the two data, if the front one

        //      is less than the back, then return 1

     if(Cmp::lt(pmove->m_pnext->m_data,pdel->m_pnext->m_data)){

        pdel=pmove;

     }

     pmove=pmove->m_pnext;

   }

 

   pmove=pdel;

   pdel=pdel->m_pnext;

   pmove->m_pnext=pdel->m_pnext;

   Type temp=pdel->m_data;

   delete pdel;

   return temp;

}

 

template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::GetFront(){

   if(IsEmpty()){

     cout<<"There is no elements!"<<endl;

     exit(1);

   }

   QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront->m_pnext;

   while(pmove){   //get the minimize priority's data

     if(Cmp::lt(pmove->m_data,pdel->m_data)){

        pdel=pmove;

     }

     pmove=pmove->m_pnext;

   }

   return pdel->m_data;

}

 

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Print(){

   QueueNode<Type,Cmp> *pmove=m_pfront;

   cout<<"front";

 

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

 

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

Test.cpp

#include <iostream>

#include <cstdlib>

using namespace std;

 

#include "PriorityQueue.h"

 

int main(){

   PriorityQueue<int,Compare<int> > queue;

   int init[10]={1,9,3,5,0,8,2,4,6,7};

   for(int i=0;i<10;i++){

     queue.Append(init[i]);

   }

   queue.Print();

 

   queue.Delete();

 

   queue.Print();

 

   system("pause");

   system("cls");

  

   PriorityQueue<SpecialData,SpecialCmp> spe_queue;

   int init2[5][2]={{34,2},{64,1},{18,3},{24,2},{55,4}};

   SpecialData data[5];

   for(int i=0;i<5;i++){

     data[i].m_npir=init2[i][1];

     data[i].m_ntenor=init2[i][0];

   }

   for(int i=0;i<5;i++){

     spe_queue.Append(data[i]);

   }

   spe_queue.Print();

 

    cout<<spe_queue.GetFront()<<endl<<endl;

   spe_queue.Delete();

   spe_queue.Print();

  

  

   return 0;

}

10、串

MyString.h

const int MAXSIZE=100;

 

class CMyString

{

public:

   CMyString(const CMyString& copy);

   CMyString(const char *init);

   CMyString();

   ~CMyString(){

     delete[] m_pstr;

   }

   int Length() const{

     return m_ncurlen;

   }

   int Find(CMyString part) const;

   char* GetBuffer() const;

 

public:

   CMyString& operator()(int pos,int len);

   bool operator==(const CMyString cmp_str) const;

   bool operator!=(const CMyString cmp_str) const;

   bool operator<(const CMyString cmp_str) const;

   bool operator>(const CMyString cmp_str) const;

   bool operator!() const{

     return m_ncurlen==0;

   }

   CMyString& operator=(const CMyString &copy);

   CMyString& operator+=(const CMyString &add);

   char& operator[](int i);

   friend ostream& operator<<(ostream& ,CMyString&);

   friend istream& operator>>(istream& ,CMyString&);

private:

   void Next();

 

private:

   int m_ncurlen;

   char *m_pstr;

   int *m_pnext;

};

 

MyString.cpp

#include <iostream>

#include <cstring>

 

using namespace std;

 

#include "MyString.h"

 

 

 

CMyString::CMyString(){        //create empty string

   m_pstr=new char[MAXSIZE+1];

   if(!m_pstr){

     cerr<<"Allocation Error"<<endl;

     exit(1);

   }

   this->m_ncurlen=0;

   m_pstr[0]='\0';

}

 

CMyString::CMyString(const char *init){    //initialize the string with char*

   m_pstr=new char[MAXSIZE+1];

   if(!m_pstr){

     cerr<<"Allocation Error"<<endl;

     exit(1);

   }

   this->m_ncurlen=strlen(init);

   strcpy(m_pstr,init);

}

 

CMyString::CMyString(const CMyString &copy){  //initialize the string with string

   m_pstr=new char[MAXSIZE+1];

   if(!m_pstr){

     cerr<<"Allocation Error"<<endl;

     exit(1);

   }

   this->m_ncurlen=copy.m_ncurlen;

   strcpy(m_pstr,copy.m_pstr);

}

 

int CMyString::Find(CMyString part) const{    //string match :KMP

   int posP=0,posT=0;

   int lengthP=part.m_ncurlen,lengthT=this->m_ncurlen;

 

   part.Next();

   while(posP<lengthP&&posT<lengthT){

     if(part.m_pstr[posP]==this->m_pstr[posT]){

        posP++;

        posT++;

     }

     else{

        if(posP==0){

          posT++;

        }

        else{

          posP=part.m_pnext[posP-1];

        }

     }

   }

   delete[] part.m_pnext;

   if(posP<lengthP){

     return 0;

   }

   else{

     return 1;

   }

}

 

void CMyString::Next(){        //get the next char for matching : KMP

   int length=this->m_ncurlen;

   this->m_pnext=new int[length];

   this->m_pnext[0]=0;

   for(int i=1;i<length;i++){

     int j=this->m_pnext[i-1];

     while(*(this->m_pstr+i)!=*(this->m_pstr+j)&&j>0){

        j=this->m_pnext[j-1];

     }

     if(*(this->m_pstr+i)==*(this->m_pstr+j)){

        this->m_pnext[i]=j+1;

     }

     else{

        this->m_pnext[i]=0;

     }

   }

// for(int i=0;i<length;i++)

//   cout<<i<<":\t"<<m_pnext[i]<<endl;

}

 

char *CMyString::GetBuffer() const{   //get the char* from string

   return this->m_pstr;

}

 

CMyString& CMyString::operator()(int pos, int len){     //get len char with the begining of pos

   CMyString *temp=new CMyString;

   if(pos<0||pos+len-1>MAXSIZE||len<0){

     temp->m_ncurlen=0;

     temp->m_pstr[0]='\0';

   }

   else{

     if(pos+len-1>=m_ncurlen){

        len=m_ncurlen-pos;

     }

     temp->m_ncurlen=len;

     for(int i=0,j=pos;i<len;i++,j++){

        temp->m_pstr[i]=m_pstr[j];

     }

     temp->m_pstr[len]='\0';

   }

   return *temp;

}

 

bool CMyString::operator==(const CMyString cmp_str) const{

   if(this->m_ncurlen!=cmp_str.m_ncurlen){

     return 0;

   }

   for(int i=0;i<this->m_ncurlen;i++){

     if(this->m_pstr[i]!=cmp_str.m_pstr[i])

        return 0;

   }

   return 1;

}

bool CMyString::operator!=(const CMyString cmp_str) const{

   if(*this==cmp_str)

     return 0;

   return 1;

}

bool CMyString::operator<(const CMyString cmp_str) const{

   if(this->m_ncurlen!=cmp_str.m_ncurlen){

     return this->m_ncurlen<cmp_str.m_ncurlen;

   }

   for(int i=0;i<this->m_ncurlen;i++){

     if(this->m_pstr[i]!=cmp_str.m_pstr[i]){

        return this->m_pnext[i]<cmp_str.m_pnext[i];

     }

   }

   return 0;

}

bool CMyString::operator>(const CMyString cmp_str) const{

   if(*this<cmp_str||*this==cmp_str){

     return 0;

   }

   return 1;

}

CMyString& CMyString::operator=(const CMyString &copy){    //赋值操作

   delete[] this->m_pstr;

   this->m_pstr=new char[copy.m_ncurlen+1];

   strcpy

     (this->m_pstr,copy.m_pstr);

   return *this;

}

CMyString& CMyString::operator+=(const CMyString &add){    //字符串追加

   int length=this->m_ncurlen+add.m_ncurlen;

   int n=this->m_ncurlen;

   CMyString temp(*this);

   delete[] this->m_pstr;

   this->m_pstr=new char[length+1];

   for(int i=0;i<n;i++){

     this->m_pstr[i]=temp[i];

   }

   for(int i=n;i<length;i++){

     this->m_pstr[i]=add.m_pstr[i-n];

   }

   this->m_pstr[length]='\0';

   return *this;

}

char& CMyString::operator[](int i){   //取元素

   if(i<0||i>=this->m_ncurlen){

     cout<<"out of boundary!"<<endl;

     exit(1);

   }

   return this->m_pstr[i];

}

 

ostream& operator<<(ostream& os,CMyString& str){

   os<<str.m_pstr;

   return os;

}

 

istream& operator>>(istream& is,CMyString& str){

   is>>str.m_pstr;

   return is;

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "MyString.h"

 

int main(){

   CMyString test1("babc");

   CMyString test2("abababcdefb");

   cout<<test2.Find(test1)<<endl;

   cout<<test2(2,3)<<endl;

 

   if(test1<test2){

     cout<<test1<<"<"<<test2<<endl;

   }

   else{

     if(test1==test2){

        cout<<test1<<"=="<<test2<<endl;

     }

     else{

        if(test1>test2){

          cout<<test1<<">"<<test2<<endl;

        }

     }

   }

 

   int length=test2.Length();

   for(int i=0;i<length;i++){

     cout<<test2[i];

   }

   cout<<endl;

 

   test1+=test2;

   cout<<test1<<endl;

 

   test1=test2;

   cout<<test1<<endl;

 

   return 0;

}

11、二叉树

BinTreeNode.h

 

template<typename Type> class BinaryTree;

 

template<typename Type> class BinTreeNode{

public:

   friend class BinaryTree<Type>;

   BinTreeNode():m_pleft(NULL),m_pright(NULL){}

   BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)

     :m_data(item),m_pleft(left),m_pright(right){}

 

   Type GetData() const;    //get thd data

   BinTreeNode<Type> *GetLeft() const;   //get the left node

   BinTreeNode<Type> *GetRight() const;  //get the right node

 

   void SetData(const Type data);      //change the data

   void SetLeft(const BinTreeNode<Type> *left);  //change thd left node

   void SetRight(const BinTreeNode<Type> *right);  //change the right node

 

   void InOrder();   //inorder the tree with the root of the node

   void PreOrder();  //perorder the tree with the root of the node

   void PostOrder(); //postoder the tree with the root of the node

  

   int Size();       //get size

   int Height();     //get height

   BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);   //copy the node

   void Destroy(){   //destroy the tree with the root of the node

     if(this!=NULL){

        this->m_pleft->Destroy();

        this->m_pright->Destroy();

        delete this;

     }

   }

 

   friend bool equal<Type>(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t); //is equal?

 

private:

   BinTreeNode<Type> *m_pleft,*m_pright;

   Type m_data;

};

 

template<typename Type> Type BinTreeNode<Type>::GetData() const{

   return this!=NULL?m_data:-1;

}

 

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetLeft() const{

   return this!=NULL?m_pleft:NULL;

}

 

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetRight() const{

   return this!=NULL?m_pright:NULL;

}

 

template<typename Type> void BinTreeNode<Type>::SetData(const Type data){

   if(this!=NULL){

     m_data=data;

   }

}

 

template<typename Type> void BinTreeNode<Type>::SetLeft(const BinTreeNode<Type> *left){

   if(this!=NULL){

     m_pleft=left;

   }

}

 

template<typename Type> void BinTreeNode<Type>::SetRight(const BinTreeNode<Type> *right){

   if(this!=NULL){

     m_pright=right;

   }

}

 

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){

   if(copy==NULL){

     return NULL;

   }

 

   BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);

   temp->m_pleft=Copy(copy->m_pleft);

   temp->m_pright=Copy(copy->m_pright);

   return temp;

}

 

template<typename Type> bool equal(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t){

   if(s==NULL&&t==NULL){

     return 1;

   }

if(s&&t&&s->m_data==t->m_data&&equal(s->m_pleft,t->m_pleft)&&equal(s->m_pright,t->m_pright)){

     return 1;

   }

   return 0;

}

 

template<typename Type> void BinTreeNode<Type>::InOrder(){

   if(this!=NULL){

     this->m_pleft->InOrder();

     cout<<"--->"<<this->m_data;

     this->m_pright->InOrder();

   }

}

 

template<typename Type> void BinTreeNode<Type>::PreOrder(){

   if(this!=NULL){

     cout<<"--->"<<this->m_data;

     this->m_pleft->PreOrder();

     this->m_pright->PreOrder();

   }

}

 

template<typename Type> void BinTreeNode<Type>::PostOrder(){

   if(this!=NULL){

     this->m_pleft->PostOrder();

     this->m_pright->PostOrder();

     cout<<"--->"<<this->m_data;

   }

}

 

template<typename Type> int BinTreeNode<Type>::Size(){

   if(this==NULL){

     return 0;

   }

   return 1+this->m_pleft->Size()+this->m_pright->Size();

}

 

template<typename Type> int BinTreeNode<Type>::Height(){

   if(this==NULL){

     return -1;

   }

   int lheight,rheight;

   lheight=this->m_pleft->Height();

   rheight=this->m_pright->Height();

   return 1+(lheight>rheight?lheight:rheight);

}

 

BinaryTree.h

#include "BinTreeNode.h"

 

template<typename Type> class BinaryTree{

public:

   BinaryTree():m_proot(NULL){}

   BinaryTree(const Type stop):m_stop(stop),m_proot(NULL){}

   BinaryTree(BinaryTree<Type>& copy);

   virtual ~BinaryTree(){

     m_proot->Destroy();

   }

   virtual bool IsEmpty(){     //is empty?

     return m_proot==NULL;

   }

  

   virtual BinTreeNode<Type> *GetLeft(BinTreeNode<Type> *current); //get the left node

   virtual BinTreeNode<Type> *GetRight(BinTreeNode<Type> *current);//get the right node

   virtual BinTreeNode<Type> *GetParent(BinTreeNode<Type> *current);//ghe thd parent

   const BinTreeNode<Type> *GetRoot() const;  //get root

  

   virtual bool Insert(const Type item);    //insert a new node

   virtual BinTreeNode<Type> *Find(const Type item) const;   //find thd node with the data

 

   void InOrder();

   void PreOrder();

   void PostOrder();

 

   int Size();    //get size

   int Height();  //get height

 

   BinaryTree<Type>& operator=(const BinaryTree<Type> copy);   //evaluate node

 

   friend bool operator== <Type>(const BinaryTree<Type> s,const BinaryTree<Type> t);//is equal?

   friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);  //output the data

   friend istream& operator>> <Type>(istream& ,BinaryTree<Type>&);  //input the data

    

private:

   Type m_stop;   //just using for input the data;

   BinTreeNode<Type> *m_proot;

 

   //find the parent of current in the tree with the root of start

   BinTreeNode<Type> *GetParent(BinTreeNode<Type> *start,BinTreeNode<Type> *current);

   void Print(BinTreeNode<Type> *start,int n=0); //print the tree with the root of start

};

 

template<typename Type> BinaryTree<Type>::BinaryTree(BinaryTree<Type>& copy){

   if(copy.m_proot){

     this->m_stop=copy.m_stop;

   }

   m_proot=m_proot->Copy(copy.m_proot);

}

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetLeft(BinTreeNode<Type> *current){

   return m_proot&&current?current->m_pleft:NULL;

}

 

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetRight(BinTreeNode<Type> *current){

   return m_proot&&current?current->m_pright:NULL;

}

 

template<typename Type> const BinTreeNode<Type>* BinaryTree<Type>::GetRoot() const{

   return m_proot;

}

 

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *start, BinTreeNode<Type> *current){

   if(start==NULL||current==NULL){

     return NULL;

   }

   if(start->m_pleft==current||start->m_pright==current){

     return start;

   }

   BinTreeNode<Type> *pmove;

   if((pmove=GetParent(start->m_pleft,current))!=NULL){//find the parent in the left subtree

     return pmove;

   }

   else{

     return GetParent(start->m_pright,current); //find the parent in the right subtree

   }

}

 

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *current){

   return m_proot==NULL||current==m_proot?NULL:GetParent(m_proot,current);

}

 

 

template<typename Type> bool BinaryTree<Type>::Insert(const Type item){

   BinTreeNode<Type> *pstart=m_proot,*newnode=new BinTreeNode<Type>(item);

   if(m_proot==NULL){

     m_proot=newnode;

     return 1;

   }

   while(1){

     if(item==pstart->m_data){

        cout<<"The item "<<item<<" is exist!"<<endl;

        return 0;

     }

     if(item<pstart->m_data){

        if(pstart->m_pleft==NULL){

          pstart->m_pleft=newnode;

          return 1;

        }

        pstart=pstart->m_pleft;  //if less than the node then insert to the left subtree

     }

     else{

        if(pstart->m_pright==NULL){

          pstart->m_pright=newnode;

          return 1;

        }

        pstart=pstart->m_pright;//if more than the node then insert to the right subtree

     }

   }

}

 

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::Find(const Type item) const{

   BinTreeNode<Type> *pstart=m_proot;

   while(pstart){

     if(item==pstart->m_data){

        return pstart;

     }

     if(item<pstart->m_data){

        pstart=pstart->m_pleft;  //if less than the node then find in the left subtree

     }

     else{

        pstart=pstart->m_pright;//if more than the node then find in the right subtree

     }

   }

   return NULL;

}

 

template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){

   if(start==NULL){

     for(int i=0;i<n;i++){

        cout<<"     ";

     }

     cout<<"NULL"<<endl;

     return;

   }

   Print(start->m_pright,n+1); //print the right subtree

   for(int i=0;i<n;i++){  //print blanks with the height of the node

     cout<<"     ";

   }

   if(n>=0){

     cout<<start->m_data<<"--->"<<endl;//print the node

   }

   Print(start->m_pleft,n+1);  //print the left subtree

}

 

template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(const BinaryTree<Type> copy){

   if(copy.m_proot){

     this->m_stop=copy.m_stop;

   }

   m_proot=m_proot->Copy(copy.m_proot);

    return *this;

}

 

template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){

   out.Print(out.m_proot);

   return os;

}

 

template<typename Type> istream& operator>>(istream& is,BinaryTree<Type>& in){

   Type item;

   cout<<"initialize the tree:"<<endl<<"Input data(end with "<<in.m_stop<<"!):";

   is>>item;

   while(item!=in.m_stop){  //m_stop is the end of input

     in.Insert(item);

     is>>item;

   }

   return is;

}

 

template<typename Type> bool operator==(const BinaryTree<Type> s,const BinaryTree<Type> t){

   return equal(s.m_proot,t.m_proot);

}

 

template<typename Type> void BinaryTree<Type>::InOrder(){

   this->m_proot->InOrder();

}

 

template<typename Type> void BinaryTree<Type>::PreOrder(){

   this->m_proot->PreOrder();

}

 

template<typename Type> void BinaryTree<Type>::PostOrder(){

   this->m_proot->PostOrder();

}

 

template<typename Type> int BinaryTree<Type>::Size(){

   return this->m_proot->Size();

 

}

 

template<typename Type> int BinaryTree<Type>::Height(){

   return this->m_proot->Height();

}

 

Test.cpp

#include <iostream>

 

using namespace std;

 

#include "BinaryTree.h"

 

int main(){

   BinaryTree<int> tree(-1);

// int init[10]={3,6,0,2,8,4,9,1,5,7};

   int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8

     ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};

   for(int i=0;i<30;i++){

     tree.Insert(init[i]);

   }

   //cin>>tree;

   cout<<tree<<endl;

 

   cout<<tree.GetParent(tree.Find(20))->GetData()<<endl;

   cout<<tree.Find(15)->GetRight()->GetData()<<endl;

 

   cout<<"size="<<tree.Size()<<endl;

   cout<<"height="<<tree.Height()<<endl;

 

   tree.InOrder();

   cout<<endl<<endl;

   tree.PreOrder();

   cout<<endl<<endl;

   tree.PostOrder();

   cout<<endl<<endl;

  

 

   BinaryTree<int> tree2=tree;

   cout<<tree2<<endl;

 

   cout<<tree2.GetParent(tree2.Find(20))->GetData()<<endl;

   cout<<tree2.Find(15)->GetRight()->GetData()<<endl;

 

   cout<<(tree==tree2)<<endl;

   return 0;

}

12、线索二叉树

ThreadNode.h

template<typename Type> class ThreadTree;

template<typename Type> class ThreadInorderIterator;

 

template<typename Type> class ThreadNode{

public:

   friend class ThreadTree<Type>;

   friend class ThreadInorderIterator<Type>;

   ThreadNode():m_nleftthread(1),m_nrightthread(1){

     m_pleft=this;

     m_pright=this;

   }

   ThreadNode(const Type item):m_data(item),m_pleft(NULL),m_pright(NULL)

     ,m_nleftthread(0),m_nrightthread(0){}

 

private:

   int m_nleftthread,m_nrightthread;

   ThreadNode<Type> *m_pleft,*m_pright;

   Type m_data;

};

 

ThreadTree.h

#include "ThreadNode.h"

 

template<typename Type> class ThreadInorderIterator;

 

template<typename Type> class ThreadTree{

public:

   friend class ThreadInorderIterator<Type>;

   ThreadTree():m_proot(new ThreadNode<Type>()){}

 

ThreadInorderIterator.h

#include "ThreadTree.h"

 

template<typename Type> class ThreadInorderIterator{

public:

   ThreadInorderIterator(ThreadTree<Type> &tree):m_ptree(tree),m_pcurrent(tree.m_proot){

     //InThread(m_ptree.m_proot->m_pleft,m_ptree.m_proot);

   }

  

   ThreadNode<Type> *First();

   ThreadNode<Type> *Prior();

   ThreadNode<Type> *Next();

 

   void Print();

   void Print(ThreadNode<Type> *start, int n=0);

   void InOrder();

   void InsertLeft(ThreadNode<Type> *left);

   void InsertRight(ThreadNode<Type> *right);

   ThreadNode<Type> *GetParent(ThreadNode<Type> *current);

 

  

private:

   ThreadTree<Type> &m_ptree;

   ThreadNode<Type> *m_pcurrent;

   void InThread(ThreadNode<Type> *current,ThreadNode<Type> *pre);

};

 

template<typename Type> void ThreadInorderIterator<Type>::InThread(

   ThreadNode<Type> *current, ThreadNode<Type> *pre){

   if(current!=m_ptree.m_proot){

     InThread(current->m_pleft,pre);

     if(current->m_pleft==NULL){

        current->m_pleft=pre;

        current->m_nleftthread=1;

     }

     if(pre->m_pright==NULL){

        pre->m_pright=current;

        pre->m_nrightthread=1;

     }

 

     pre=current;

     InThread(current->m_pright,pre);

   }

}

 

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::First(){

   while(m_pcurrent->m_nleftthread==0){

     m_pcurrent=m_pcurrent->m_pleft;

   }

   return m_pcurrent;

}

 

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Prior(){

   ThreadNode<Type> *pmove=m_pcurrent->m_pleft;

   if(0==m_pcurrent->m_nleftthread){

     while(0==pmove->m_nrightthread){

        pmove=pmove->m_pright;

     }

   }

   m_pcurrent=pmove;

   if(m_pcurrent==m_ptree.m_proot){

     return NULL;

   }

   return m_pcurrent;

}

 

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Next(){

   ThreadNode<Type> *pmove=m_pcurrent->m_pright;

   if(0==m_pcurrent->m_nrightthread){

     while(0==pmove->m_nleftthread){

        pmove=pmove->m_pleft;

     }

   }

   m_pcurrent=pmove;

   if(m_pcurrent==m_ptree.m_proot){

     return NULL;

   }

   return m_pcurrent;

}

 

template<typename Type> void ThreadInorderIterator<Type>::InOrder(){

   ThreadNode<Type> *pmove=m_ptree.m_proot;

   while(pmove->m_pleft!=m_ptree.m_proot){

     pmove=pmove->m_pleft;

   }

   m_pcurrent=pmove;

   cout<<"root";

   while(pmove!=m_ptree.m_proot&&pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=this->Next();

   }

   cout<<"--->end";

}

 

template<typename Type> void ThreadInorderIterator<Type>::InsertLeft(ThreadNode<Type> *left){

   left->m_pleft=m_pcurrent->m_pleft;

   left->m_nleftthread=m_pcurrent->m_nleftthread;

   left->m_pright=m_pcurrent;

   left->m_nrightthread=1;

   m_pcurrent->m_pleft=left;

   m_pcurrent->m_nleftthread=0;

   if(0==left->m_nleftthread){

     m_pcurrent=left->m_pleft;

     ThreadNode<Type> *temp=First();

     temp->m_pright=left;

   }

   m_pcurrent=left;

}

 

template<typename Type> void ThreadInorderIterator<Type>::InsertRight(ThreadNode<Type> *right){

   right->m_pright=m_pcurrent->m_pright;

   right->m_nrightthread=m_pcurrent->m_nrightthread;

   right->m_pleft=m_pcurrent;

   right->m_nleftthread=1;

   m_pcurrent->m_pright=right;

   m_pcurrent->m_nrightthread=0;

   if(0==right->m_nrightthread){

     m_pcurrent=right->m_pright;

     ThreadNode<Type> *temp=First();

     temp->m_pleft=right;

   }

   m_pcurrent=right;

}

 

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::GetParent(

   ThreadNode<Type> *current){

   ThreadNode<Type> *pmove=current;

   while(0==pmove->m_nleftthread){

     pmove=pmove->m_pleft;

   }

   pmove=pmove->m_pleft;

   if(pmove==m_ptree.m_proot){

     if(pmove->m_pleft==current){

        return NULL;

     }

   }

   if(pmove->m_pright==current){

     return pmove;

   }

   pmove=pmove->m_pright;

   while(pmove->m_pleft!=current){

     pmove=pmove->m_pleft;

   }

   return pmove;

}

 

template<typename Type> void ThreadInorderIterator<Type>::Print(ThreadNode<Type> *start, int n){

   if(start->m_nleftthread&&start->m_nrightthread){

   for(int i=0;i<n;i++){

     cout<<"     ";

   }

   if(n>=0){

     cout<<start->m_data<<"--->"<<endl;

   }

 

     return;

   }

   if(start->m_nrightthread==0){

     Print(start->m_pright,n+1);

   }

   for(int i=0;i<n;i++){

     cout<<"     ";

   }

   if(n>=0){

     cout<<start->m_data<<"--->"<<endl;

   }

   if(start->m_nleftthread==0){

     Print(start->m_pleft,n+1);

   }

}

 

template<typename Type> void ThreadInorderIterator<Type>::Print(){

   Print(m_ptree.m_proot->m_pleft);

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "ThreadInorderIterator.h"

 

int main(){

   ThreadTree<int> tree;

   ThreadInorderIterator<int> threadtree(tree);

   int init[10]={3,6,0,2,8,4,9,1,5,7};

   for(int i=0;i<10;){

     threadtree.InsertLeft(new ThreadNode<int>(init[i++]));

     threadtree.InsertRight(new ThreadNode<int>(init[i++]));

   }

   threadtree.Print();

   cout<<endl<<endl;

 

   threadtree.InOrder();

   return 0;

}

  

private:

   ThreadNode<Type> *m_proot;

};

13、堆

MinHeap.h

template<typename Type> class MinHeap{

public:

   MinHeap(int size):m_nMaxSize(size > defaultsize ? size : defaultsize)

        ,m_pheap(new Type[m_nMaxSize]),m_ncurrentsize(0){}

   MinHeap(Type heap[],int n);    //initialize heap by a array

   ~MinHeap(){

     delete[] m_pheap;

   }

 

public:

   bool Insert(const Type item);  //insert element

   bool Delete(const Type item);  //delete element

   bool IsEmpty() const{      

     return m_ncurrentsize == 0;

   }

   bool IsFull() const{

     reutrn m_ncurrentsize == m_nMaxSize;

   }

   void Print(const int start=0, int n=0);      

 

private:

    //adjust the elements of the child tree with the root of start from top to bottom

   void Adjust(const int start, const int end); 

 

private:

   static const int defaultsize = 100;

   const int m_nMaxSize; 

   Type *m_pheap;

   int m_ncurrentsize;

};

 

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

   int i = start,j = i*2+1;    //get the position of the child of i

   Type temp=m_pheap[i];

   while(j <= end){   

     if(j<end && m_pheap[j]>m_pheap[j+1]){   //left>right

        j++;

     }

     if(temp <= m_pheap[j]){ //adjust over

        break;

     }

     else{   //change the parent and the child, then adjust the child

        m_pheap[i] = m_pheap[j];

        i = j;

        j = 2*i+1;

     }

   }

   m_pheap[i] = temp;

}

 

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(

     n > defaultsize ? n : defaultsize){

   m_pheap = new Type[m_nMaxSize];

   for(int i=0; i<n; i++){

     m_pheap[i] = heap[i];

   }

   m_ncurrentsize = n;

   int pos=(n-2)/2;  //Find the last child tree which has more than one element;

   while(pos>=0){

     Adjust(pos, n-1);

     pos--;

   }

}

 

template<typename Type> bool MinHeap<Type>::Insert(const Type item){

   if(m_ncurrentsize == m_nMaxSize){

     cerr<<"Heap Full!"<<endl;

     return 0;

   }

   m_pheap[m_ncurrentsize] = item;

   int j = m_ncurrentsize, i = (j-1)/2;    //get the position of the parent of j

   Type temp = m_pheap[j];

   while(j > 0){   //adjust from bottom to top

     if(m_pheap[i] <= temp){

        break;

     }

     else{

        m_pheap[j] = m_pheap[i];

        j = i;

        i = (j-1)/2;

     }

   }

   m_pheap[j] = temp;

   m_ncurrentsize++;

   return 1;

}

 

template<typename Type> bool MinHeap<Type>::Delete(const Type item){

   if(0 == m_ncurrentsize){

     cerr<<"Heap Empty!"<<endl;

     return 0;

   }

   for(int i=0; i<m_ncurrentsize; i++){

     if(m_pheap[i] == item){

        m_pheap[i] = m_pheap[m_ncurrentsize-1]; //filled with the last element

        Adjust(i,m_ncurrentsize-2);     //adjust the tree with start of i

        m_ncurrentsize--;

        i=0;

     }

   }

   return 1;

}

 

template<typename Type> void MinHeap<Type>::Print(const int start, int n){

   if(start >= m_ncurrentsize){

     return;

   }

   Print(start*2+2, n+1);  //print the right child tree

 

   for(int i=0; i<n; i++){

     cout<<"    ";

   }

   cout<< m_pheap[start] << "--->" << endl;

 

   Print(start*2+1, n+1);  //print the left child tree

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "MinHeap.h"

 

int main(){

   int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8

        ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};

   MinHeap<int> heap(init,30);

   heap.Print();

   cout<<endl<<endl<<endl;

 

   heap.Insert(20);

   heap.Print();

   cout<<endl<<endl<<endl;

  

   heap.Delete(20);

   heap.Print();

   cout<<endl<<endl<<endl;

   return 0;

}

14、哈夫曼树

BinTreeNode.h

template<typename Type> class BinaryTree;

 

template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

 

template<typename Type> class BinTreeNode{

public:

   friend class BinaryTree<Type>;

    friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);

   BinTreeNode():m_pleft(NULL),m_pright(NULL){}

   BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)

     :m_data(item),m_pleft(left),m_pright(right){}

   void Destroy(){   //destroy the tree with the root of the node

     if(this!=NULL){

        this->m_pleft->Destroy();

        this->m_pright->Destroy();

        delete this;

     }

   }

    Type GetData(){

        return m_data;

    }

    BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);   //copy the node

 

private:

   BinTreeNode<Type> *m_pleft,*m_pright;

   Type m_data;

};

 

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){

   if(copy==NULL){

     return NULL;

   }

 

   BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);

   temp->m_pleft=Copy(copy->m_pleft);

   temp->m_pright=Copy(copy->m_pright);

   return temp;

}

 

BinaryTree.h

#include "BinTreeNode.h"

 

template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

 

template<typename Type> class BinaryTree{

public:

   

    BinaryTree(BinaryTree<Type> &bt1, BinaryTree<Type> &bt2){

        m_proot = new BinTreeNode<Type>(bt1.m_proot->m_data

            + bt2.m_proot->m_data, bt1.m_proot, bt2.m_proot);

    }

    BinaryTree(Type item){

        m_proot = new BinTreeNode<Type>(item);

    }

    BinaryTree(const BinaryTree<Type> &copy){

        this->m_proot = copy.m_proot;

    }

    BinaryTree(){

        m_proot = NULL;

    }

    void Destroy(){

        m_proot->Destroy();

    }

    ~BinaryTree(){

//        m_proot->Destroy();

    }

    

    BinaryTree<Type>& operator=(BinaryTree<Type> copy);   //evaluate node

    friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);

    friend bool operator < <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

    friend bool operator > <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

    friend bool operator <= <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);

    friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);  //output the data

private:

   BinTreeNode<Type> *m_proot;

    void Print(BinTreeNode<Type> *start,int n=0);  //print the tree with the root of start

};

 

template<typename Type> bool operator <(BinaryTree<Type> &l, BinaryTree<Type> &r){

    return l.m_proot->GetData() < r.m_proot->GetData();

}

 

template<typename Type> bool operator >(BinaryTree<Type> &l, BinaryTree<Type> &r){

    return l.m_proot->GetData() > r.m_proot->GetData();

}

 

template<typename Type> bool operator <=(BinaryTree<Type> &l, BinaryTree<Type> &r){

    return
l.m_proot->GetData() <= r.m_proot->GetData();

}

 

 

template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){

   if(start==NULL){

     for(int i=0;i<n;i++){

        cout<<"     ";

     }

     cout<<"NULL"<<endl;

     return;

   }

   Print(start->m_pright,n+1); //print the right subtree

   for(int i=0;i<n;i++){  //print blanks with the height of the node

     cout<<"     ";

   }

   if(n>=0){

     cout<<start->m_data<<"--->"<<endl;//print the node

   }

   Print(start->m_pleft,n+1);  //print the left subtree

}

 

template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){

   out.Print(out.m_proot);

   return os;

}

 

template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(BinaryTree<Type> copy){

   m_proot=m_proot->Copy(copy.m_proot);

    return *this;

}

 

MinHeap.h

template<typename Type> class MinHeap{

public:

   MinHeap(Type heap[],int n);    //initialize heap by a array

   ~MinHeap(){

     delete[] m_pheap;

   }

 

public:

    bool Insert(const Type item);

    bool DeleteMin(Type &first);

 

private:

   void Adjust(const int start, const int end);  //adjust the elements from start to end

 

 

private:

   const int m_nMaxSize; 

   Type *m_pheap;

   int m_ncurrentsize;

};

 

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

   int i = start,j = i*2+1;

   Type temp=m_pheap[i];

   while(j <= end){

     if(j<end && m_pheap[j]>m_pheap[j+1]){

        j++;

     }

     if(temp <= m_pheap[j]){

        break;

     }

     else{

        m_pheap[i] = m_pheap[j];

        i = j;

        j = 2*i+1;

     }

   }

   m_pheap[i] = temp;

}

 

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){

   m_pheap = new Type[m_nMaxSize];

   for(int i=0; i<n; i++){

     m_pheap[i] = heap[i];

   }

   m_ncurrentsize = n;

   int pos=(n-2)/2;  //Find the last tree which has more than one element;

   while(pos>=0){

     Adjust(pos, n-1);

     pos--;

   }

}

 

template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){

    first = m_pheap[0];

    m_pheap[0] = m_pheap[m_ncurrentsize-1];

    m_ncurrentsize--;

    Adjust(0, m_ncurrentsize-1);

    return 1;

}

 

template<typename Type> bool MinHeap<Type>::Insert(const Type item){

   if(m_ncurrentsize == m_nMaxSize){

     cerr<<"Heap Full!"<<endl;

     return 0;

   }

   m_pheap[m_ncurrentsize] = item;

   int j = m_ncurrentsize, i = (j-1)/2;

   Type temp = m_pheap[j];

   while(j > 0){

     if(m_pheap[i] <= temp){

        break;

     }

     else{

        m_pheap[j] = m_pheap[i];

        j = i;

        i = (j-1)/2;

     }

   }

   m_pheap[j] = temp;

   m_ncurrentsize++;

   return 1;

}

 

Huffman.h

#include "BinaryTree.h"

#include "MinHeap.h"

 

template<typename Type> void Huffman(Type *elements, int n, BinaryTree<Type> &tree){

    BinaryTree<Type> first, second;

    BinaryTree<Type> node[20];

    for (int i=0; i<n; i++){

        node[i].m_proot = new BinTreeNode<Type>(elements[i]);

    }

    MinHeap<BinaryTree<Type> > heap(node, n);

 

    for (int i=0; i<n-1; i++){

        heap.DeleteMin(first);

        heap.DeleteMin(second);

       

        //using the first and the second minimize element create new tree

        if (first.m_proot->GetData() == second.m_proot->GetData()){

            tree = *(new BinaryTree<Type>(second, first));

        }

        else {

            tree = *(new BinaryTree<Type>(first, second));

        }

 

        heap.Insert(tree);

    }

}

 

Test.cpp

#include <iostream>

 

using namespace std;

 

#include "Huffman.h"

 

int main(){

    BinaryTree<int> tree;

    int init[10]={3,6,0,2,8,4,9,1,5,7};

    Huffman(init,10,tree);

    cout << tree;

    tree.Destroy();

    return 0;

}

15、树

QueueNode.h

template<typename Type> class LinkQueue;

 

template<typename Type> class QueueNode{

private:

   friend class LinkQueue<Type>;

   QueueNode(const Type item,QueueNode<Type> *next=NULL)

     :m_data(item),m_pnext(next){}

private:

   Type m_data;

   QueueNode<Type> *m_pnext;

};

 

LinkQueue.h

#include "QueueNode.h"

 

template<typename Type> class LinkQueue{

public:

   LinkQueue():m_prear(NULL),m_pfront(NULL){}

   ~LinkQueue(){

     MakeEmpty();

   }

   void Append(const Type item);

   Type Delete();

   Type GetFront();

   void MakeEmpty();

   bool IsEmpty() const{

     return m_pfront==NULL;

   }

   void Print();

 

private:

   QueueNode<Type> *m_prear,*m_pfront;

};

 

template<typename Type> void LinkQueue<Type>::MakeEmpty(){

   QueueNode<Type> *pdel;

   while(m_pfront){

     pdel=m_pfront;

     m_pfront=m_pfront->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> void LinkQueue<Type>::Append(const Type item){

   if(m_pfront==NULL){

     m_pfront=m_prear=new QueueNode<Type>(item);

   }

   else{

     m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

   }

}

 

template<typename Type> Type LinkQueue<Type>::Delete(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   QueueNode<Type> *pdel=m_pfront;

   Type temp=m_pfront->m_data;

   m_pfront=m_pfront->m_pnext;

   delete pdel;

   return temp;

}

 

template<typename Type> Type LinkQueue<Type>::GetFront(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pfront->m_data;

}

 

template<typename Type> void LinkQueue<Type>::Print(){

   QueueNode<Type> *pmove=m_pfront;

   cout<<"front";

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

TreeNode.h

template<typename Type> class Tree;

 

template<typename Type> class TreeNode{

public:

   friend class Tree<Type>;

 

private:

   Type m_data;

   TreeNode<Type> *m_pfirst,*m_pnext;

   TreeNode():m_pfirst(NULL), m_pnext(NULL){}

   TreeNode(Type item, TreeNode<Type> *first = NULL, TreeNode<Type> *next = NULL)

     :m_data(item), m_pfirst(first), m_pnext(next){}

};

 

Tree.h

#include "TreeNode.h"

#include "LinkQueue.h"

 

template<typename Type> class Tree{

public:

    Tree():m_proot(NULL), m_pcurrent(NULL){}

public:

    TreeNode<Type> *GetCurrent(){ //Get the current node

        return m_pcurrent;

    }

    void SetCurrent(TreeNode<Type> *current){ //set the current node

        m_pcurrent = current;

    }

    bool Insert(Type item);    //insert an new node to current node

    void Remove(Type item);    //delete the node whose data is equal to item

    void Remove(TreeNode<Type> *current); //delete the node

    bool Find(Type item);   //find the node whose data is equal to item

    void PrintChild(TreeNode<Type> *current); //print the child tree

    TreeNode<Type> *Parent(TreeNode<Type> *current);  //get the parent

 

    void Print();         //print the tree

    void PreOrder(TreeNode<Type> *root); //ordering the tree by visiting the root first

    void PostOrder(TreeNode<Type> *root); //ordering the tree by visiting the root last

    void LevelOrder(TreeNode<Type> *root);  //ordering the tree by level

    void PreOrder();

    void PostOrder();

    void LevelOrder();

 

private:

   TreeNode<Type> *m_proot,*m_pcurrent; 

    bool Find(TreeNode<Type> *root, Type item);

    void Remove(TreeNode<Type> *root, Type item);

    TreeNode<Type> *Parent(TreeNode<Type> *root, TreeNode<Type> *current);

    void Print(TreeNode<Type> *start, int n=0);

};

 

template<typename Type> bool Tree<Type>::Insert(Type item){

    TreeNode<Type> *newnode = new TreeNode<Type>(item);

    if (NULL == newnode){

        cout << "Application Error!" <<endl;

        exit(1);

    }

    if (NULL == m_proot){

        m_proot = newnode;

        m_pcurrent = m_proot;

        return 1;

    }

    if (NULL == m_pcurrent){

        cerr << "insert error!" <<endl;

        return 0;

    }

 

    if(NULL == m_pcurrent->m_pfirst){

        m_pcurrent->m_pfirst = newnode;

        m_pcurrent = newnode;

        return 1;

    }

    TreeNode<Type> *pmove = m_pcurrent->m_pfirst;

    while(pmove->m_pnext){

        pmove = pmove->m_pnext;

    }

    pmove->m_pnext = newnode;

    m_pcurrent = newnode;

    return 1;

 

}

 

template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *current){

    if(NULL == current){

        return;

    }

    TreeNode<Type> *temp = Parent(current);

    if(NULL == temp){

        TreeNode<Type> *pmove = current->m_pfirst;

        if(NULL != pmove->m_pfirst){

            pmove=pmove->m_pfirst;

            while(pmove->m_pnext){

                pmove = pmove->m_pnext;

            }

            pmove->m_pnext = current->m_pfirst->m_pnext;

            current->m_pfirst->m_pnext = NULL;

        }

        else{

            pmove->m_pfirst = pmove->m_pnext;

        }

        m_proot = current->m_pfirst;

    }

    else{

        if(temp->m_pfirst == current){

            TreeNode<Type> *pmove = current->m_pfirst;

            if (pmove){

                while (pmove->m_pnext){

                    pmove = pmove->m_pnext;

                }

                pmove->m_pnext = current->m_pnext;

            }

            else{

                current->m_pfirst = current->m_pnext;

            }

 

        }

        else{

            TreeNode<Type> *pmove = temp->m_pfirst;

            while(pmove->m_pnext != current){

                pmove = pmove->m_pnext;

            }

            pmove->m_pnext = current->m_pnext;

            while(pmove->m_pnext){

                pmove = pmove->m_pnext;

            }

            pmove->m_pnext = current->m_pfirst;

        }

    }

    delete current;

}

 

template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *root, Type item){

    if(NULL == root){

        return;

    }

    if(root->m_pfirst){

        TreeNode<Type> *pmove=root->m_pfirst;

        while(pmove){

            Remove(pmove, item);

            pmove = pmove->m_pnext;

        }

    }

    if(root->m_data == item){

        Remove(root);

    }

 

}

template<typename Type> void Tree<Type>::Remove(Type item){

    return Remove(m_proot, item);

}

 

template<typename Type> TreeNode<Type>* Tree<Type>::Parent(

    TreeNode<Type> *root, TreeNode<Type> *current){

        if(NULL == root){

            return NULL;

        }

        TreeNode<Type> *pmove=root->m_pfirst,*temp;

        if(NULL != pmove){

            while(pmove){

                if(pmove == current){

                    return root;

                }

                pmove = pmove->m_pnext;

            }

        }

        pmove = root->m_pfirst;

        while(pmove){

            temp = Parent(pmove, current);

            if(temp){

                return temp;

            }

            pmove = pmove->m_pnext;

        }

        return NULL;

}

 

template<typename Type> TreeNode<Type>* Tree<Type>::Parent(TreeNode<Type> *current){

    return Parent(m_proot,current);

}

 

template<typename Type> void Tree<Type>::PrintChild(TreeNode<Type> *current){

    TreeNode<Type> *pmove = current->m_pfirst;

    cout<<"first";

    if(NULL != pmove){

        cout<<"--->"<<pmove->m_data;

    }

    while(pmove->m_pnext){

        cout<<"--->"<<pmove->m_data;

        pmove = pmove->m_pnext;

    }

}

 

template<typename Type> bool Tree<Type>::Find(TreeNode<Type> *root, Type item){

    if (root->m_data == item){

        return 1;

    }

    if (NULL == root){

        return 0;

    }

    TreeNode<Type> *pmove=root->m_pfirst;

    if (NULL == pmove){

        return 0;

    }

    while (pmove){

        if (Find(pmove, item)){

            return 1;

        }

        pmove = pmove->m_pnext;

    }

    return 0;

}

 

template<typename Type> bool Tree<Type>::Find(Type item){

    return Find(m_proot,item);

}

 

template<typename Type> void Tree<Type>::Print(TreeNode<Type> *start, int n = 0){

    if (NULL == start){

        for (int i=0; i<n; i++){

            cout << "     ";

        }

        cout << "NULL" << endl;

        return;

    }

    TreeNode<Type> *pmove = start->m_pfirst;

    Print(pmove, n+1);

 

    for (int i=0; i<n; i++){

        cout << "     ";

    }

    cout << start->m_data << "--->" <<endl;

 

    if (NULL == pmove){  

        return;

    }

    pmove = pmove->m_pnext;

    while (pmove){

        Print(pmove, n+1);

        pmove = pmove->m_pnext;

    }

}

 

template<typename Type> void Tree<Type>::Print(){

    Print(m_proot);

}

 

template<typename Type> void Tree<Type>::PreOrder(TreeNode<Type> *root){

    if (NULL == root){

        return;

    }

    cout << root->m_data;

    TreeNode<Type> *pmove = root->m_pfirst;

    while (pmove){

        PreOrder(pmove);

        pmove = pmove->m_pnext;

    }

}

 

template<typename Type> void Tree<Type>::PostOrder(TreeNode<Type> *root){

    if (NULL == root){

        return;

    }

    TreeNode<Type> *pmove = root->m_pfirst;

    while (pmove){

        PostOrder(pmove);

        pmove = pmove->m_pnext;

    }

    cout << root->m_data;

}

 

template<typename Type> void Tree<Type>::PreOrder(){

    PreOrder(m_proot);

}

 

template<typename Type> void Tree<Type>::PostOrder(){

    PostOrder(m_proot);

}

 

template<typename Type> void Tree<Type>::LevelOrder(TreeNode<Type> *root){ //using queue

    LinkQueue<TreeNode<Type> *> queue;

    TreeNode<Type> *pmove, *ptemp;

    if (root != NULL){

        queue.Append(root);

        while (!queue.IsEmpty()){

            ptemp = queue.Delete();

            cout << ptemp->m_data;

            pmove = ptemp->m_pfirst;

            while(pmove){

                queue.Append(pmove);

                pmove = pmove->m_pnext;

            }

        }

    }

}

 

template<typename Type> void Tree<Type>::LevelOrder(){

    LevelOrder(m_proot);

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "Tree.h"

 

int main(){

   Tree<int> tree;

    int init[10]={3,6,0,2,8,4,9,1,5,7};

    for (int i=0; i<10; i++){

       tree.Insert(init[i]);

        if (1 == i % 2){

            tree.SetCurrent(tree.Parent(tree.GetCurrent()));

        }

    }

    tree.Print();

    cout << endl <<endl << endl;

   

    tree.Remove(3);

    tree.Print();

    cout << endl <<endl << endl;

 

    cout << tree.Find(5) << endl << tree.Find(11) <<endl;

   

    tree.PreOrder();

    cout << endl;

    tree.PostOrder();

    cout << endl;

    tree.LevelOrder();

   return 0;

}

16、B+树

BTreeNode.h

template<typename Type> class BTree;

 

template<typename Type> class BTreeNode{

public:

    friend BTree<Type>;

    BTreeNode(): m_nMaxSize(0), m_ptr(NULL), m_pparent(NULL){}

    BTreeNode(int size): m_nsize(0), m_nMaxSize(size), m_pparent(NULL){

        m_pkey = new Type[size+1];

        m_ptr = new BTreeNode<Type> *[size+1];

        for (int i=0; i<=size; i++){

            m_ptr[i] = NULL;

            m_pkey[i] = this->m_Infinity;

        }

    }

    void Destroy(BTreeNode<Type> *root);

    ~BTreeNode(){

     if (m_nMaxSize){

        delete[] m_pkey;

        for (int i=0; i<=m_nMaxSize; i++){

          m_ptr[i] = NULL;

        }

     }

    }

    bool IsFull(){

        return m_nsize == m_nMaxSize;

    }

    Type GetKey(int i){

        if (this){

            return this->m_pkey[i];

        }

        return -1;

    }

 

private:

    int m_nsize;

    int m_nMaxSize;     //the Max Size of key

    Type *m_pkey;

    BTreeNode<Type> *m_pparent;

    BTreeNode<Type> **m_ptr;

    static const Type m_Infinity = 10000;

};

 

template<typename Type> struct Triple{

    BTreeNode<Type> *m_pfind;

    int m_nfind;

    bool m_ntag;

};

 

template<typename Type> void BTreeNode<Type>::Destroy(BTreeNode<Type> *root){

    if (NULL == root){

        return;

    }

    for (int i=0; i<root->m_nsize; i++){

        Destroy(root->m_ptr[i]);

    }

    delete root;

}

 

BTree.h

#include "BTreeNode.h"

 

 

template<typename Type> class BTree{

public:

    BTree(int size): m_nMaxSize(size), m_proot(NULL){}

    ~BTree();

    Triple<Type> Search(const Type item);

    int Size();

    int Size(BTreeNode<Type> *root);

    bool Insert(const Type item);   //insert item

    bool Remove(const Type item);   //delete item

    void Print();                   //print the BTree

    BTreeNode<Type> *GetParent(const Type item);   

 

private:

    //insert the pright and item to pinsert in the nth place;

    void InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright);

 

    void PreMove(BTreeNode<Type> *root, int n); //move ahead

   

    //merge the child tree

    void Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n);

 

    //adjust with the parent and the left child tree

    void LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n);

 

    //adjust with the parent and the left child tree

    void RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n);

 

    void Print(BTreeNode<Type> *start, int n = 0);

   

private:

    BTreeNode<Type> *m_proot;

    const int m_nMaxSize;

};

 

 

template<typename Type> BTree<Type>::~BTree(){

    m_proot->Destroy(m_proot);

}

template<typename Type> Triple<Type> BTree<Type>::Search(const Type item){

    Triple<Type> result;

    BTreeNode<Type> *pmove = m_proot, *parent = NULL;

    int i = 0;

    while (pmove){

        i = -1;

        while (item > pmove->m_pkey[++i]); //find the suit position

        if (pmove->m_pkey[i] == item){

            result.m_pfind = pmove;

            result.m_nfind = i;

            result.m_ntag = 1;

            return result;

        }

        parent = pmove;

        pmove = pmove->m_ptr[i];    //find in the child tree

    }

    result.m_pfind = parent;

    result.m_nfind = i;

    result.m_ntag = 0;

    return result;

}

 

template<typename Type> void BTree<Type>::InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright){

    pinsert->m_nsize++;

    for (int i=pinsert->m_nsize; i>n; i--){

        pinsert->m_pkey[i] = pinsert->m_pkey[i-1];

        pinsert->m_ptr[i+1] = pinsert->m_ptr[i];

    }

    pinsert->m_pkey[n] = item;

    pinsert->m_ptr[n+1] = pright;

 

    if (pinsert->m_ptr[n+1]){       //change the right child tree's parent

        pinsert->m_ptr[n+1]->m_pparent = pinsert;

        for (int i=0; i<=pinsert->m_ptr[n+1]->m_nsize; i++){

            if (pinsert->m_ptr[n+1]->m_ptr[i]){

                pinsert->m_ptr[n+1]->m_ptr[i]->m_pparent = pinsert->m_ptr[n+1];

            }

        }

    }

   

}

template<typename Type> bool BTree<Type>::Insert(const Type item){

    if (NULL == m_proot){       //insert the first node

        m_proot = new BTreeNode<Type>(m_nMaxSize);

        m_proot->m_nsize = 1;

        m_proot->m_pkey[1] = m_proot->m_pkey[0];

        m_proot->m_pkey[0] = item;

        m_proot->m_ptr[0] = m_proot->m_ptr[1] =NULL;

        return 1;

    }

    Triple<Type> find = this->Search(item); //search the position

    if (find.m_ntag){

        cerr << "The item is exist!" << endl;

        return 0;

    }

    BTreeNode<Type> *pinsert = find.m_pfind, *newnode;

    BTreeNode<Type> *pright = NULL, *pparent;

    Type key = item;

    int n = find.m_nfind;

 

    while (1){

        if (pinsert->m_nsize < pinsert->m_nMaxSize-1){  //There is some space

            InsertKey(pinsert, n, key, pright);

            return 1;

        }

 

        int m = (pinsert->m_nsize + 1) / 2;     //get the middle item

        InsertKey(pinsert, n, key, pright);     //insert first, then break up

        newnode = new BTreeNode<Type>(this->m_nMaxSize);//create the newnode for break up

 

        //break up

        for (int i=m+1; i<=pinsert->m_nsize; i++){     

            newnode->m_pkey[i-m-1] = pinsert->m_pkey[i];

            newnode->m_ptr[i-m-1] = pinsert->m_ptr[i];

            pinsert->m_pkey[i] = pinsert->m_Infinity;

            pinsert->m_ptr[i] = NULL;

        }

        newnode->m_nsize = pinsert->m_nsize - m - 1;

        pinsert->m_nsize = m;

 

        for (int i=0; i<=newnode->m_nsize; i++){    //change the parent

            if (newnode->m_ptr[i]){

                newnode->m_ptr[i]->m_pparent = newnode;

                for (int j=0; j<=newnode->m_ptr[i]->m_nsize; j++){

                    if (newnode->m_ptr[i]->m_ptr[j]){

                        newnode->m_ptr[i]->m_ptr[j]->m_pparent = newnode->m_ptr[i];

                    }

                }

            }

        }

        for (int i=0; i<=pinsert->m_nsize; i++){    //change the parent

            if (pinsert->m_ptr[i]){

                pinsert->m_ptr[i]->m_pparent = pinsert;

                for (int j=0; j<=pinsert->m_nsize; j++){

                    if (pinsert->m_ptr[i]->m_ptr[j]){

                        pinsert->m_ptr[i]->m_ptr[j]->m_pparent = pinsert->m_ptr[i];

                    }

                }

            }

        }

        //break up over

       

        key = pinsert->m_pkey[m];

        pright = newnode;

        if (pinsert->m_pparent){    //insert the key to the parent

            pparent = pinsert->m_pparent;

            n = -1;

            pparent->m_pkey[pparent->m_nsize] = pparent->m_Infinity;

            while (key > pparent->m_pkey[++n]);

            newnode->m_pparent = pinsert->m_pparent;

            pinsert = pparent;

        }

        else {              //create new root

            m_proot = new BTreeNode<Type>(this->m_nMaxSize);

            m_proot->m_nsize = 1;

            m_proot->m_pkey[1] = m_proot->m_pkey[0];

            m_proot->m_pkey[0] = key;

            m_proot->m_ptr[0] = pinsert;

            m_proot->m_ptr[1] = pright;

            newnode->m_pparent = pinsert->m_pparent = m_proot;

            return 1;

        }

    }

}

 

template<typename Type> void BTree<Type>::PreMove(BTreeNode<Type> *root, int n){

    root->m_pkey[root->m_nsize] = root->m_Infinity;

    for (int i=n; i<root->m_nsize; i++){

        root->m_pkey[i] = root->m_pkey[i+1];

        root->m_ptr[i+1] = root->m_ptr[i+2];

    }

   

    root->m_nsize--;

}

 

template<typename Type> void BTree<Type>::Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n){

    pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[n];

    BTreeNode<Type> *ptemp;

   

    for (int i=0; i<=pright->m_nsize; i++){ //merge the two child tree and the parent

        pleft->m_pkey[pleft->m_nsize+i+1] = pright->m_pkey[i];

        pleft->m_ptr[pleft->m_nsize+i+1] = pright->m_ptr[i];

        ptemp = pleft->m_ptr[pleft->m_nsize+i+1];

        if (ptemp){         //change thd right child tree's parent

            ptemp->m_pparent = pleft;

            for (int j=0; j<=ptemp->m_nsize; j++){

                if (ptemp->m_ptr[j]){

                    ptemp->m_ptr[j]->m_pparent = ptemp;

                }

            }

        }

    }

   

    pleft->m_nsize = pleft->m_nsize + pright->m_nsize + 1;

    delete pright;

    PreMove(pparent, n);   

//    this->Print();

}

 

template<typename Type> void BTree<Type>::LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n){

    BTreeNode<Type> *pleft = pparent->m_ptr[n-1], *ptemp;

    if (pleft->m_nsize > min-1){

        for (int i=pright->m_nsize+1; i>0; i--){

            pright->m_pkey[i] = pright->m_pkey[i-1];

            pright->m_ptr[i] = pright->m_ptr[i-1];

        }

        pright->m_pkey[0] = pparent->m_pkey[n-1];

        

        pright->m_ptr[0] = pleft->m_ptr[pleft->m_nsize];

        ptemp = pright->m_ptr[0];

        if (ptemp){     //change the tree's parent which is moved

            ptemp->m_pparent = pright;

            for (int i=0; i<ptemp->m_nsize; i++){

                if (ptemp->m_ptr[i]){

                    ptemp->m_ptr[i]->m_pparent = ptemp;

                }

            }

        }

        pparent->m_pkey[n-1] = pleft->m_pkey[pleft->m_nsize-1];

        pleft->m_pkey[pleft->m_nsize] = pleft->m_Infinity;

        pleft->m_nsize--;

        pright->m_nsize++;

    }

    else {

        Merge(pleft, pparent, pright, n-1);

    }

//       this->Print();

}

 

template<typename Type> void BTree<Type>::RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n){

    BTreeNode<Type> *pright = pparent->m_ptr[1], *ptemp;

    if (pright && pright->m_nsize > min-1){

        pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[0];

        pparent->m_pkey[0] = pright->m_pkey[0];

        pleft->m_ptr[pleft->m_nsize+1] = pright->m_ptr[0];

        ptemp = pleft->m_ptr[pleft->m_nsize+1];

        if (ptemp){         //change the tree's parent which is moved

            ptemp->m_pparent = pleft;

            for (int i=0; i<ptemp->m_nsize; i++){

                if (ptemp->m_ptr[i]){

                    ptemp->m_ptr[i]->m_pparent = ptemp;

                }

            }

        }

        pright->m_ptr[0] = pright->m_ptr[1];

        pleft->m_nsize++;

        PreMove(pright,0);

    }

    else {

        Merge(pleft, pparent, pright, 0);

    }

}

 

 

template<typename Type> bool BTree<Type>::Remove(const Type item){

    Triple<Type> result = this->Search(item);

    if (!result.m_ntag){

        return 0;

    }

    BTreeNode<Type> *pdel, *pparent, *pmin;

    int n = result.m_nfind;

    pdel = result.m_pfind;

 

    if (pdel->m_ptr[n+1] != NULL){  //change into delete leafnode

        pmin = pdel->m_ptr[n+1];

        pparent = pdel;

        while (pmin != NULL){

            pparent = pmin;

            pmin = pmin->m_ptr[0];

        }

        pdel->m_pkey[n] = pparent->m_pkey[0];

        pdel = pparent;

        n = 0;

    }

 

    PreMove(pdel, n); //delete the node

 

    int min = (this->m_nMaxSize + 1) / 2;

    while (pdel->m_nsize < min-1){  //if it is not a BTree, then adjust

        n = 0;

        pparent = pdel->m_pparent;

        if (NULL == pparent)

        {

            return 1;

        }

        while (n<= pparent->m_nsize && pparent->m_ptr[n]!=pdel){

            n++;

        }

        if (!n){

            RightAdjust(pdel, pparent, min, n); //adjust with the parent and the right child tree

        }

        else {

            LeftAdjust(pdel, pparent, min, n); //adjust with the parent and the left child tree

        }

        pdel = pparent;

        if (pdel == m_proot){

            break;

        }

    }

    if (!m_proot->m_nsize){         //the root is merged

        pdel = m_proot->m_ptr[0];

        delete m_proot;

        m_proot = pdel;

        m_proot->m_pparent = NULL;

        for (int i=0; i<m_proot->m_nsize; i++){

            if (m_proot->m_ptr[i]){

                m_proot->m_ptr[i]->m_pparent = m_proot;

            }

        }

    }

    return 1;

}

 

template<typename Type> void BTree<Type>::Print(BTreeNode<Type> *start, int n){

    if (NULL == start){

        return;

    }

    if (start->m_ptr[0]){

        Print(start->m_ptr[0], n+1);    //print the first child tree

    }

    else {

        for (int j=0; j<n; j++){

            cout << "     ";

        }

        cout << "NULL" << endl;

    }

 

    for (int i=0; i<start->m_nsize; i++){   //print the orther child tree

        for (int j=0; j<n; j++){

            cout << "     ";

        }

        cout << start->m_pkey[i] << "--->" <<endl;

        if (start->m_ptr[i+1]){

            Print(start->m_ptr[i+1], n+1);

        }

        else {

            for (int j=0; j<n; j++){

                cout << "     ";

            }

            cout << "NULL" << endl;

        }

    }

}

 

template<typename Type> void BTree<Type>::Print(){

    Print(m_proot);

}

 

template<typename Type> int BTree<Type>::Size(BTreeNode<Type> *root){

    if (NULL == root){

        return 0;

    }

    int size=root->m_nsize;

    for (int i=0; i<=root->m_nsize; i++){

        if (root->m_ptr[i]){

            size += this->Size(root->m_ptr[i]);

        }

    }

    return size;

}

 

template<typename Type> int BTree<Type>::Size(){

    return this->Size(this->m_proot);

}

 

template<typename Type> BTreeNode<Type>* BTree<Type>::GetParent(const Type item){

    Triple<Type> result = this->Search(item);

    return result.m_pfind->m_pparent;

}

test.cpp

#include <iostream>

#include <cstdlib>

 

using namespace std;

 

#include "BTree.h"

 

int main(){

    BTree<int> btree(3);

    int init[]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32,55,34,22,76,45

        ,14,26,33,88,87,92,44,54,23,12,21,99,19,27,57,18,72,124,158,234

    ,187,218,382,122,111,222,333,872,123};

    for (int i=0; i<49; i++){

        btree.Insert(init[i]);

 

    }

   

    btree.Print();

    cout << endl << endl << endl;

   

    Triple<int> result = btree.Search(13);

    cout << result.m_pfind->GetKey(result.m_nfind) << endl;

    cout << endl << endl << endl;

 

    for (int i=0; i<49; i++){

        btree.Remove(init[i]);

 

        btree.Print();

        cout << endl << endl << endl;

               

    }

   

    return 0;

}

17、图

MinHeap.h

template<typename Type> class MinHeap{

public:

   MinHeap(Type heap[],int n);    //initialize heap by a array

   ~MinHeap(){

     delete[] m_pheap;

   }

 

public:

    bool Insert(const Type item);

    bool DeleteMin(Type &first);

 

private:

   void Adjust(const int start, const int end);  //adjust the elements from start to end

 

 

private:

   const int m_nMaxSize; 

   Type *m_pheap;

   int m_ncurrentsize;

};

 

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){

   int i = start,j = i*2+1;

   Type temp=m_pheap[i];

   while(j <= end){

     if(j<end && m_pheap[j]>m_pheap[j+1]){

        j++;

     }

     if(temp <= m_pheap[j]){

        break;

     }

     else{

        m_pheap[i] = m_pheap[j];

        i = j;

        j = 2*i+1;

     }

   }

   m_pheap[i] = temp;

}

 

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){

   m_pheap = new Type[m_nMaxSize];

   for(int i=0; i<n; i++){

     m_pheap[i] = heap[i];

   }

   m_ncurrentsize = n;

   int pos=(n-2)/2;  //Find the last tree which has more than one element;

   while(pos>=0){

     Adjust(pos, n-1);

     pos--;

   }

}

 

template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){

    first = m_pheap[0];

    m_pheap[0] = m_pheap[m_ncurrentsize-1];

    m_ncurrentsize--;

    Adjust(0, m_ncurrentsize-1);

    return 1;

}

 

template<typename Type> bool MinHeap<Type>::Insert(const Type item){

   if(m_ncurrentsize == m_nMaxSize){

     cerr<<"Heap Full!"<<endl;

     return 0;

   }

   m_pheap[m_ncurrentsize] = item;

   int j = m_ncurrentsize, i = (j-1)/2;

   Type temp = m_pheap[j];

   while(j > 0){

     if(m_pheap[i] <= temp){

        break;

     }

     else{

        m_pheap[j] = m_pheap[i];

        j = i;

        i = (j-1)/2;

     }

   }

   m_pheap[j] = temp;

   m_ncurrentsize++;

   return 1;

}

 

Edge.h

template<typename DistType> struct Edge{

public:

    Edge(int dest, DistType cost): m_ndest(dest), m_cost(cost), m_pnext(NULL){}

 

public:

    int m_ndest;

    DistType m_cost;

    Edge<DistType> *m_pnext;

 

};

 

Vertex.h

#include "Edge.h"

 

template<typename NameType, typename DistType> struct Vertex{

public:

    Vertex(): adj(NULL){}

    NameType m_data;

    Edge<DistType> *adj;

    ~Vertex();

};

 

template<typename NameType, typename DistType> Vertex<NameType, DistType>::~Vertex(){

    Edge<DistType> *pmove = adj;

    while (pmove){

        adj = pmove->m_pnext;

        delete pmove;

        pmove = adj;

    }

}

 

Graph.h

#include "Vertex.h"

 

template<typename NameType, typename DistType> class Graph{

public:

    Graph(int size = m_nDefaultSize);   //create the Graph with the most vertex of size

    ~Graph();

    bool GraphEmpty() const{    //Is empty?

        return 0 == m_nnumvertex;

    }

    bool GraphFull() const{     //Is full?

        return m_nMaxNum == m_nnumvertex;

    }

    int NumberOfVertex() const{ //get the number of vertex

        return m_nnumvertex;

    }

    int NumberOfEdge() const{   //get the number of edge

        return m_nnumedges;

    }

    NameType GetValue(int v);   //get the value of the vth vertex

    DistType GetWeight(int v1, int v2); //get the weight between v1 and v2

    int GetFirst(int v);        //get the first neighbor vertex of v

    int GetNext(int v1, int v2);//get the next neighbor vertex of v1 behind v2

    bool InsertVertex(const NameType vertex);   //insert vertex with the name of vertex

    bool Removevertex(int v);   //remove the vth vertex

 

    //insert the edge between v1 and v2

    bool InsertEdge(int v1, int v2, DistType weight=m_Infinity);   

 

    bool RemoveEdge(int v1, int v2);    //delete the edge between v1 and v2

    void Print();   //print the graph

 

    Edge<DistType> *GetMin(int v, int *visited);    //get the min weight of the neighbor vertex of v

    void Prim(Graph<NameType, DistType> &graph);    //get the minimize span tree

    void DFS(int v, int *visited);      //depth first search

    void DFS();

    void Dijkstra(int v, DistType *shotestpath);    //get the min weight from v to other vertex

   

private:

    Vertex<NameType, DistType> *m_pnodetable;   //neighbor list

    int m_nnumvertex;

    const int m_nMaxNum;

    static const int m_nDefaultSize = 10;       //the default maximize vertex

    static const DistType m_Infinity = 100000;  //there is no edge

    int m_nnumedges;

    int Getvertexpos(const NameType vertex);    //get the vertex's position with the name of vertex

};

 

 

template<typename NameType, typename DistType> Graph<NameType, DistType>::Graph(int size)

        : m_nnumvertex(0), m_nMaxNum(size), m_nnumedges(0){

    m_pnodetable = new Vertex<NameType, DistType>[size];   

}

 

template<typename NameType, typename DistType> Graph<NameType, DistType>::~Graph(){

    Edge<DistType> *pmove;

    for (int i=0; i<this->m_nnumvertex; i++){

        pmove = this->m_pnodetable[i].adj;

        if (pmove){

            this->m_pnodetable[i].adj = pmove->m_pnext;

            delete pmove;

            pmove = this->m_pnodetable[i].adj;

        }

    }

    delete[] m_pnodetable;

}

 

template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetFirst(int v){

    if (v<0 || v>=this->m_nnumvertex){

        return -1;

    }

    Edge<DistType> *ptemp = this->m_pnodetable[v].adj;

    return m_pnodetable[v].adj ? m_pnodetable[v].adj->m_ndest : -1;

}

 

template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetNext(int v1, int v2){

    if (-1 != v1){

        Edge<DistType> *pmove = this->m_pnodetable[v1].adj;

        while (NULL != pmove->m_pnext){

            if (pmove->m_ndest==v2){

                return pmove->m_pnext->m_ndest;

            }

            pmove = pmove->m_pnext;

        }       

    }

    return -1;

}

 

template<typename NameType, typename DistType> NameType Graph<NameType, DistType>::GetValue(int v){

    if (v<0 || v>=this->m_nnumvertex){

        cerr << "The vertex is not exsit" <<endl;

        exit(1);

    }

    return m_pnodetable[v].m_data;

 

}

 

template<typename NameType, typename DistType> int Graph<NameType, DistType>::Getvertexpos(const NameType vertex){

    for (int i=0; i<this->m_nnumvertex; i++){

        if (vertex == m_pnodetable[i].m_data){

            return i;

        }

    }

    return -1;

}

 

template<typename NameType, typename DistType> DistType Graph<NameType, DistType>::GetWeight(int v1, int v2){

    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

        if (v1 == v2){

            return 0;

        }

        Edge<DistType> *pmove = m_pnodetable[v1].adj;

        while (pmove){

            if (pmove->m_ndest == v2){

                return pmove->m_cost;

            }

            pmove = pmove->m_pnext;

        }

    }

    return m_Infinity;

}

 

template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertEdge(int v1, int v2, DistType weight){

    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

        Edge<DistType> *pmove = m_pnodetable[v1].adj;

        if (NULL == pmove){ //the first neighbor

            m_pnodetable[v1].adj = new Edge<DistType>(v2, weight);

            return 1;

        }

        while (pmove->m_pnext){

            if (pmove->m_ndest == v2){

                break;

            }

            pmove = pmove->m_pnext;

        }

        if (pmove->m_ndest == v2){  //if the edge is exist, change the weight

            pmove->m_cost = weight;

            return 1;

        }

        else{

            pmove->m_pnext = new Edge<DistType>(v2, weight);

            return 1;

        }

    }

    return 0;

}

template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertVertex(const NameType vertex){

    int i = this->Getvertexpos(vertex);

    if (-1 != i){

        this->m_pnodetable[i].m_data = vertex;

    }

    else{

        if (!this->GraphFull()){

            this->m_pnodetable[this->m_nnumvertex].m_data = vertex;

            this->m_nnumvertex++;

        }

        else{

            cerr << "The Graph is Full" <<endl;

            return 0;

        }

    }

    return 1;

}

template<typename NameType, typename DistType> bool Graph<NameType, DistType>::RemoveEdge(int v1, int v2){

    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){

        Edge<DistType> *pmove = this->m_pnodetable[v1].adj, *pdel;

        if (NULL == pmove){

            cerr << "the edge is not exist!" <<endl;

            return 0;

        }

        if (pmove->m_ndest == v2){  //the first neighbor

            this->m_pnodetable[v1].adj = pmove->m_pnext;

            delete pmove;

            return 1;

        }

        while (pmove->m_pnext){

            if (pmove->m_pnext->m_ndest == v2){

                pdel = pmove->m_pnext;

                pmove->m_pnext = pdel->m_pnext;

                delete pdel;

                return 1;

            }

            pmove = pmove->m_pnext;

        }

    }

    cerr << "the edge is not exist!" <<endl;

    return 0;

}

template<typename NameType, typename DistType> bool Graph<NameType, DistType>::Removevertex(int v){

    if (v<0 || v>=this->m_nnumvertex){

        cerr << "the vertex is not exist!" << endl;

        return 0;

    }

    Edge<DistType> *pmove, *pdel;

    for (int i=0; i<this->m_nnumvertex; i++){

        pmove = this->m_pnodetable[i].adj;

        if (i != v){    //delete the edge point to v

            if (NULL == pmove){

                continue;

            }

            if (pmove->m_ndest == v){

                this->m_pnodetable[i].adj = pmove->m_pnext;

                delete pmove;

                continue;

            }

            else {

                if (pmove->m_ndest > v){    //the vertex more than v subtract 1

                    pmove->m_ndest--;

                }

            }

            while (pmove->m_pnext){

                if (pmove->m_pnext->m_ndest == v){

                    pdel = pmove->m_pnext;

                    pmove->m_pnext = pdel->m_pnext;

                    delete pdel;

                }

                else {

                    if (pmove->m_pnext->m_ndest > v){

                        pmove->m_pnext->m_ndest--;

                        pmove = pmove->m_pnext;

                    }

                }

            }

        }

        else {      //delete the edge point from v

            while (pmove){

                this->m_pnodetable[i].adj = pmove->m_pnext;

                delete pmove;

                pmove = this->m_pnodetable[i].adj;

            }

        }

    }

    this->m_nnumvertex--;

    for (int i=v; i<this->m_nnumvertex; i++)    //delete the vertex

    {

        this->m_pnodetable[i].adj = this->m_pnodetable[i+1].adj;

        this->m_pnodetable[i].m_data = this->m_pnodetable[i+1].m_data;

    }

    this->m_pnodetable[this->m_nnumvertex].adj = NULL;

    return 1;

}

 

template<typename NameType, typename DistType> void Graph<NameType, DistType>::Print(){

    Edge<DistType> *pmove;

    for (int i=0; i<this->m_nnumvertex; i++){

        cout << this->m_pnodetable[i].m_data << "--->";

        pmove = this->m_pnodetable[i].adj;

        while (pmove){

            cout << pmove->m_cost << "--->" << this->m_pnodetable[pmove->m_ndest].m_data << "--->";

            pmove = pmove->m_pnext;

        }

        cout << "NULL" << endl;

    }

}

 

template<typename NameType, typename DistType> void Graph<NameType, DistType>::Prim(Graph<NameType, DistType> &graph){

    int *node = new int[this->m_nnumvertex];    //using for store the vertex visited

    int *visited = new int[this->m_nnumvertex];

    int count = 0;

    Edge<DistType> *ptemp, *ptemp2 = new Edge<DistType>(0, this->m_Infinity), *pmin;

    int min;

    for (int i=0; i<this->m_nnumvertex; i++){

        graph.InsertVertex(this->m_pnodetable[i].m_data);

        node[i] = 0;

        visited[i] = 0;

    }

    visited[0] = 1;

    while(++count < this->m_nnumvertex){

        pmin = ptemp2;

        pmin->m_cost = this->m_Infinity;

 

        //get the minimize weight between the vertex visited and the  vertex which is not visited

        for (int i=0; i<count; i++){

            ptemp = GetMin(node[i], visited);

            if (NULL == ptemp){

                continue;

            }

            if (pmin->m_cost > ptemp->m_cost){

                pmin = ptemp;

                min = node[i];           

            }

        }

 

        node[count] = pmin->m_ndest;

        visited[node[count]] = 1;

        graph.InsertEdge(pmin->m_ndest, min, pmin->m_cost);

        graph.InsertEdge(min, pmin->m_ndest, pmin->m_cost);

    }

    graph.DFS();

    delete ptemp2;

    delete[] node;

    delete[] visited;

}

 

template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(int v, int *visited){

    cout << "--->" << this->GetValue(v);

    visited[v] = 1;

    int weight = this->GetFirst(v);

    while (-1 != weight){

        if (!visited[weight]){

            cout << "--->" << this->GetWeight(v, weight);

            DFS(weight, visited);

        }

        weight = this->GetNext(v, weight);

    }

}

 

template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(){

    int *visited = new int[this->m_nnumvertex];

    for (int i=0; i<this->m_nnumvertex; i++){

        visited[i] = 0;

    }

    cout << "head";

    DFS(0, visited);

    cout << "--->end";

}

 

template<typename NameType, typename DistType> Edge<DistType>* Graph<NameType, DistType>::GetMin(int v, int *visited){

    Edge<DistType> *pmove = this->m_pnodetable[v].adj, *ptemp = new Edge<DistType>(0, this->m_Infinity), *pmin = ptemp;

    while (pmove){

        if (!visited[pmove->m_ndest] && pmin->m_cost>pmove->m_cost){

            pmin = pmove;

        }

        pmove = pmove->m_pnext;

    }

    if (pmin == ptemp){

        delete ptemp;

        return NULL;

    }

    delete ptemp;

    return pmin;

}

template<typename NameType, typename DistType> void Graph<NameType, DistType>::Dijkstra(int v, DistType *shotestpath){

    int *visited = new int[this->m_nnumvertex];

    int *node = new int[this->m_nnumvertex];

    for (int i=0; i<this->m_nnumvertex; i++){

        visited[i] = 0;

        node[i] = 0;

        shotestpath[i] = this->GetWeight(v, i);

    }

    visited[v] = 1;

    for (int i=1; i<this->m_nnumvertex; i++){

        DistType min = this->m_Infinity;

        int u=v;

 

        for (int j=0; j<this->m_nnumvertex; j++){   //get the minimize weight

            if (!visited[j] && shotestpath[j]<min){

                min = shotestpath[j];

                u = j;

            }

        }

 

        visited[u] = 1;

        for (int w=0; w<this->m_nnumvertex; w++){   //change the weight from v to other vertex

            DistType weight = this->GetWeight(u, w);

            if (!visited[w] && weight!=this->m_Infinity

                    && shotestpath[u]+weight<shotestpath[w]){

                shotestpath[w] = shotestpath[u] + weight;

            }

        }

    }

    delete[] visited;

    delete[] node;

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "Graph.h"

 

int main(){

    Graph<char *, int> graph,graph2;

    int shotestpath[7];

    char *vertex[] = {"地大", "武大", "华科", "交大", "北大", "清华", "复旦"};

    int edge[][3] = {{0, 1, 43}, {0, 2, 12}, {1, 2, 38}, {2, 3 ,1325}

                        ,{3, 6, 55}, {4, 5, 34}, {4, 6, 248}};   

    for (int i=0; i<7; i++){

        graph.InsertVertex(vertex[i]);

    }

    graph.Print();

    cout << endl << endl <<endl;

    for (int i=0; i<7; i++){

        graph.InsertEdge(edge[i][0], edge[i][1], edge[i][2]);

        graph.InsertEdge(edge[i][1], edge[i][0], edge[i][2]);

    }

    graph.Print();

    cout << endl << endl <<endl;

    graph.Dijkstra(0, shotestpath);

    for (int i=0; i<7; i++){

        cout << graph.GetValue(0) << "--->" << graph.GetValue(i)

                << ":   " << shotestpath[i] <<endl;

    }

   

    cout << endl << endl <<endl;

    graph.Prim(graph2);

    cout << endl << endl <<endl;

    graph.Removevertex(2);

    graph.Print();

    return 0;

 

}

18、排序

Data.h

template<typename Type> class Element{

public:

    Type GetKey(){

        return key;

    }

 

    void SetKey(Type item){

        key = item;

    }

 

public:

    Element<Type>& operator =(Element<Type> copy){

        key = copy.key;

        return *this;

    }

   

    bool operator ==(Element<Type> item){

        return this->key == item.key;

    }

   

    bool operator !=(Element<Type> item){

        return this->key != item.key;

    }

 

    bool operator <(Element<Type> item){

        return this->key < item.key;

    }

   

    bool operator >(Element<Type> item){

        return this->key > item.key;

    }

 

    bool operator >=(Element<Type> item){

        return this->key >= item.key;

    }

 

    bool operator <=(Element<Type> item){

        return this->key <= item.key;

    }

 

       

private:

    Type key;

};

 

template<typename Type> class Sort;

template<typename Type> class DataList{

public:

    friend class Sort<Type>;

    DataList(int size=m_nDefaultSize): m_nMaxSize(size), m_ncurrentsize(0){

        m_pvector = new Element<Type>[size];

    }

 

    DataList(Type *data, int size);

   

    bool Insert(Type item);

    ~DataList(){

        delete[] m_pvector;

    }

 

    int Size(){

        return this->m_ncurrentsize;

    }

    void Swap(Element<Type> &left, Element<Type> &right){

        Element<Type> temp = left;

        left = right;

        right = temp;

    }

   

    void Print();

private:

    static const int m_nDefaultSize = 10;

    Element<Type> *m_pvector;

    const int m_nMaxSize;

    int m_ncurrentsize;

};

 

template<typename Type> DataList<Type>::DataList(Type *data, int size)

        : m_nMaxSize(size > m_nDefaultSize ? size : m_nDefaultSize), m_ncurrentsize(0){

    this->m_pvector = new Element<Type>[size];

    for (int i=0; i<size; i++){

        this->m_pvector[i].SetKey(data[i]);

    }

    this->m_ncurrentsize += size;

 

}

 

template<typename Type> bool DataList<Type>::Insert(Type item){

    if (this->m_ncurrentsize == this->m_nMaxSize){

        cerr << "The list is full!" <<endl;

        return 0;

    }

    this->m_pvector[this->m_ncurrentsize++].SetKey(item);

}

 

template<typename Type> void DataList<Type>::Print(){

    cout << "The list is:";

    for (int i=0; i<this->m_ncurrentsize; i++){

        cout << " " << this->m_pvector[i].GetKey();

    }

}

 

QueueNode.h

#include "QueueNode.h"

 

template<typename Type> class LinkQueue{

public:

   LinkQueue():m_prear(NULL),m_pfront(NULL){}

   ~LinkQueue(){

     MakeEmpty();

   }

   void Append(const Type item);

   Type Delete();

   Type GetFront();

   void MakeEmpty();

   bool IsEmpty() const{

     return m_pfront==NULL;

   }

   void Print();

 

private:

   QueueNode<Type> *m_prear,*m_pfront;

};

 

template<typename Type> void LinkQueue<Type>::MakeEmpty(){

   QueueNode<Type> *pdel;

   while(m_pfront){

     pdel=m_pfront;

     m_pfront=m_pfront->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> void LinkQueue<Type>::Append(const Type item){

   if(m_pfront==NULL){

     m_pfront=m_prear=new QueueNode<Type>(item);

   }

   else{

     m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

   }

}

 

template<typename Type> Type LinkQueue<Type>::Delete(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   QueueNode<Type> *pdel=m_pfront;

   Type temp=m_pfront->m_data;

   m_pfront=m_pfront->m_pnext;

   delete pdel;

   return temp;

}

 

template<typename Type> Type LinkQueue<Type>::GetFront(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pfront->m_data;

}

 

template<typename Type> void LinkQueue<Type>::Print(){

   QueueNode<Type> *pmove=m_pfront;

   cout<<"front";

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

LinkQueue.h

#include "QueueNode.h"

 

template<typename Type> class LinkQueue{

public:

   LinkQueue():m_prear(NULL),m_pfront(NULL){}

   ~LinkQueue(){

     MakeEmpty();

   }

   void Append(const Type item);

   Type Delete();

   Type GetFront();

   void MakeEmpty();

   bool IsEmpty() const{

     return m_pfront==NULL;

   }

   void Print();

 

private:

   QueueNode<Type> *m_prear,*m_pfront;

};

 

template<typename Type> void LinkQueue<Type>::MakeEmpty(){

   QueueNode<Type> *pdel;

   while(m_pfront){

     pdel=m_pfront;

     m_pfront=m_pfront->m_pnext;

     delete pdel;

   }

}

 

template<typename Type> void LinkQueue<Type>::Append(const Type item){

   if(m_pfront==NULL){

     m_pfront=m_prear=new QueueNode<Type>(item);

   }

   else{

     m_prear=m_prear->m_pnext=new QueueNode<Type>(item);

   }

}

 

template<typename Type> Type LinkQueue<Type>::Delete(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   QueueNode<Type> *pdel=m_pfront;

   Type temp=m_pfront->m_data;

   m_pfront=m_pfront->m_pnext;

   delete pdel;

   return temp;

}

 

template<typename Type> Type LinkQueue<Type>::GetFront(){

   if(IsEmpty()){

     cout<<"There is no element!"<<endl;

     exit(1);

   }

   return m_pfront->m_data;

}

 

template<typename Type> void LinkQueue<Type>::Print(){

   QueueNode<Type> *pmove=m_pfront;

   cout<<"front";

   while(pmove){

     cout<<"--->"<<pmove->m_data;

     pmove=pmove->m_pnext;

   }

   cout<<"--->rear"<<endl<<endl<<endl;

}

 

Sort.h

#include "Data.h"

#include "LinkQueue.h"

 

template<typename Type> class Sort{

public:

    void InsertSort(DataList<Type> &list, int n=-1);

    void BinaryInsertSort(DataList<Type> &list, int n=-1);

    void ShellSort(DataList<Type> &list, const int gap=-1);

    void BubbleSort(DataList<Type> &list);

    void QuickSort(DataList<Type> &list, int left=0, int right=-3);

    void SelectSort(DataList<Type> &list);

    void HeapSort(DataList<Type> &list);

    void MergeSort(DataList<Type> &list);

    void RadixSort(DataList<int> &list, int m, int d);      //just use for integer!

 

 

private:

    void BubbleSwap(DataList<Type> &list, const int n, int &flag);

    void SelectChange(DataList<Type> &list, const int n);

    void HeapAdjust(DataList<Type> &list, const int start, const int end);

    void Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len);

    void MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end);

};

 

template<typename Type> void Sort<Type>::InsertSort(DataList<Type> &list, int n){

    if (-1 == n){

        for (int i=1; i<list.m_ncurrentsize; i++){

            InsertSort(list, i);

        }

        return;

    }

    Element<Type> temp = list.m_pvector[n];

    int i;

    for (i=n; i>0; i--){

        if (temp > list.m_pvector[i-1]){

 

            break;

        }

        else{

            list.m_pvector[i] = list.m_pvector[i-1];

        }

    }

    list.m_pvector[i] = temp;

}

 

template<typename Type> void Sort<Type>::BinaryInsertSort(DataList<Type> &list, int n){

    if (-1 == n){

        for (int i=1; i<list.m_ncurrentsize; i++){

            BinaryInsertSort(list, i);

        }

        return;

    }

    Element<Type> temp = list.m_pvector[n];

    int left = 0, right = n-1;

    while(left <= right){

        int middle = (left + right) / 2;

        if (temp < list.m_pvector[middle]){

            right = middle - 1;

        }

        else {

            left = middle + 1;

        }

    }

    for (int i=n-1; i>=left; i--){

        list.m_pvector[i+1] = list.m_pvector[i];

    }

    list.m_pvector[left] = temp;

}

 

template<typename Type> void Sort<Type>::ShellSort(DataList<Type> &list, const int gap){

    if (-1 == gap){

        int gap = list.m_ncurrentsize / 2;

        while (gap){

            ShellSort(list, gap);

            gap = (int)(gap / 2);

        }

        return;

    }

    for (int i=gap; i<list.m_ncurrentsize; i++){

        InsertSort(list, i);

    }

}

 

template<typename Type> void Sort<Type>::BubbleSwap(DataList<Type> &list, const int n, int &flag){

    flag = 0;

    for (int i=list.m_ncurrentsize-1; i>=n; i--){

        if (list.m_pvector[i-1] > list.m_pvector[i]){

            list.Swap(list.m_pvector[i-1], list.m_pvector[i]);

            flag = 1;

        }

    }

}

 

template<typename Type> void Sort<Type>::BubbleSort(DataList<Type> &list){

    int flag = 1, n = 0;

    while (++n<list.m_ncurrentsize && flag){

        BubbleSwap(list, n, flag);       

    }

}

 

template<typename Type> void Sort<Type>::QuickSort(DataList<Type> &list, int left=0, int right=-1){

    if (-3 == right){

        right = list.m_ncurrentsize - 1;

    }

    if (left < right){

        int pivotpos = left;

        Element<Type> pivot = list.m_pvector[left];

        for (int i=left+1; i<=right; i++){

            if (list.m_pvector[i]<pivot && ++pivotpos!=i){

                list.Swap(list.m_pvector[pivotpos], list.m_pvector[i]);

            }

            list.Swap(list.m_pvector[left], list.m_pvector[pivotpos]);

        }

        QuickSort(list, left, pivotpos-1);

        QuickSort(list, pivotpos+1, right);

    }

 

}

 

template<typename Type> void Sort<Type>::SelectChange(DataList<Type> &list, const int n){

    int j = n;

    for (int i=n+1; i<list.m_ncurrentsize; i++){

        if (list.m_pvector[i] < list.m_pvector[j]){

            j = i;

        }

    }

    if (j != n){

        list.Swap(list.m_pvector[n], list.m_pvector[j]);

    }

}

 

template<typename Type> void Sort<Type>::SelectSort(DataList<Type> &list){

    for (int i=0; i<list.m_ncurrentsize-1; i++){

        SelectChange(list, i);

    }

}

 

template<typename Type> void Sort<Type>::HeapAdjust(DataList<Type> &list, const int start, const int end){

    int current = start, child = 2 * current + 1;

    Element<Type> temp = list.m_pvector[start];

    while (child <= end){

        if (child<end && list.m_pvector[child]<list.m_pvector[child+1]){

            child++;

        }

        if (temp >= list.m_pvector[child]){

            break;

        }

        else {

            list.m_pvector[current] = list.m_pvector[child];

            current = child;

            child = 2 * current + 1;

        }

    }

    list.m_pvector[current] = temp;

}

 

template<typename Type> void Sort<Type>::HeapSort(DataList<Type> &list){

    for (int i=(list.m_ncurrentsize-2)/2; i>=0; i--){

        HeapAdjust(list, i, list.m_ncurrentsize-1);

    }

 

    for (int i=list.m_ncurrentsize-1; i>=1; i--){

        list.Swap(list.m_pvector[0], list.m_pvector[i]);

        HeapAdjust(list, 0, i-1);

    }

}

 

template<typename Type> void Sort<Type>::MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end){

    int i = start, j = part + 1, k = start;

    while (i<=part && j<=end){

        if (list.m_pvector[i] <= list.m_pvector[j]){

            mergedlist.m_pvector[k++] = list.m_pvector[i++];

        }

        else {

            mergedlist.m_pvector[k++] = list.m_pvector[j++];

        }

    }

    if (i <= part){

        for (int m=i; m<=part && k<=end;){

            mergedlist.m_pvector[k++] = list.m_pvector[m++];

        }

    }

    else {

        for (int m=j; m<=end && k<=end; m++){

            mergedlist.m_pvector[k++] = list.m_pvector[m];

        }

    }

}

template<typename Type> void Sort<Type>::Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len){

    int n = 0;

    while (n+2*len < list.m_ncurrentsize){

        MergeDouble(list, mergedlist, n, n+len-1, n+2*len-1);

        n += 2*len;

    }

    if (n+len < list.m_ncurrentsize){

        MergeDouble(list, mergedlist, n, n+len-1, list.m_ncurrentsize-1);

    }

    else {

        for (int i=n; i<list.m_ncurrentsize; i++){

            mergedlist.m_pvector[i] = list.m_pvector[i];

        }

    }

}

 

template<typename Type> void Sort<Type>::MergeSort(DataList<Type> &list){

    DataList<Type> temp(list.m_nMaxSize);

    temp.m_ncurrentsize = list.m_ncurrentsize;

    int len = 1;

    while (len < list.m_ncurrentsize){

        Merge(list, temp, len);

        len *= 2;

        Merge(temp, list, len);

        len *= 2;

    }

}

 

template<typename Type> void Sort<Type>::RadixSort(DataList<int> &list, int m, int d){

    LinkQueue<int> *queue = new LinkQueue<int>[d];

    int power = 1;

    for (int i=0; i<m; i++){

        if (i){

            power = power * d;

        }

        for (int j=0; j<list.m_ncurrentsize; j++){

            int k = (list.m_pvector[j].GetKey() / power) % d;

            queue[k].Append(list.m_pvector[j].GetKey());

        }

 

        for (int j=0,k=0; j<d; j++){

            while (!queue[j].IsEmpty()){

                list.m_pvector[k++].SetKey(queue[j].Delete());

            }

        }

    }

}

 

test.cpp

#include <iostream>

 

using namespace std;

 

#include "Sort.h"

 

int main(){

    int init[15]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32};

    DataList<int> data(init, 15);

    Sort<int> sort;

    data.Print();

    cout << endl << endl <<endl;

    sort.InsertSort(data);

    sort.BinaryInsertSort(data);

    sort.ShellSort(data);

    sort.BubbleSort(data);

    sort.QuickSort(data);

    sort.SelectSort(data);

    sort.HeapSort(data);

    sort.MergeSort(data);

    sort.RadixSort(data, 2, 10);

data.Print();

 

    return 0;

}

摘:数据结构各种算法实现(C++模板)的更多相关文章

  1. 数据结构各种算法实现(C++模板)

    目 录 1.顺序表    1 Seqlist.h    1 Test.cpp    6 2.单链表    8 ListNode.h    8 SingleList.h    10 test.cpp   ...

  2. 【数据结构与算法】二叉树的 Morris 遍历(前序、中序、后序)

    前置说明 不了解二叉树非递归遍历的可以看我之前的文章[数据结构与算法]二叉树模板及例题 Morris 遍历 概述 Morris 遍历是一种遍历二叉树的方式,并且时间复杂度O(N),额外空间复杂度O(1 ...

  3. 《数据结构、算法及应用》9.(C++实施订单)

    最近阅读<数据结构.算法及应用>这本书,书中的习题汇总,用自己的方法来实现这些问题.可能效率.等方面存在着非常多的问题,也可能是错误的实现.假设大家在看这本书的时候有更优更好的方法来实现, ...

  4. 数据结构 Sunday算法

    Sunday算法是Daniel M.Sunday于1990年提出的字符串模式匹配算法.相对比较KMP和BM算法而言,简单了许多. Sunday算法的思想类似于BM算法中的坏字符思想,有点像其删减版.差 ...

  5. C++程序员面试题目总结(涉及C++基础、多线程多进程、网络编程、数据结构与算法)

     说明:C++程序员面试题目总结(涉及C++基础知识.多线程多进程.TCP/IP网络编程.Linux操作.数据结构与算法) 内容来自作者看过的帖子或者看过的文章,个人整理自互联网,如有侵权,请联系作者 ...

  6. 重读《学习JavaScript数据结构与算法-第三版》-第2章 ECMAScript与TypeScript概述

    定场诗 八月中秋白露,路上行人凄凉: 小桥流水桂花香,日夜千思万想. 心中不得宁静,清早览罢文章, 十年寒苦在书房,方显才高志广. 前言 洛伊安妮·格罗纳女士所著的<学习JavaScript数据 ...

  7. 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树

    文章首发于 阅读更友好的GitBook. 2-3-4树和普通红黑树 某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较 ...

  8. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

  9. 开启基本数据结构和算法之路--初识Graphviz

    在我的Linux刀耕开荒阶段,就想开始重拾C,利用C实现常用的基本数据结构和算法,而数据结构和算法的掌握的熟练程度正是程序的初学者与职业程序员的分水岭. 那么怎么开启这一段历程呢? 按照软件工程的思想 ...

随机推荐

  1. JMeter技巧集锦

    收藏些介绍JMeter使用知识的文章 1.JMeter技巧集锦 http://www.javaworld.com/javaworld/jw-07-2005/jw-0711-jmeter.html (网 ...

  2. Android 信息分享实现

    一.短信分享 01Intent intent = new Intent(Intent.ACTION_SEND);02// intent.setType("text/plain"); ...

  3. 1503162139-ny-分数拆分

    分数拆分 时间限制:3000 ms  |  内存限制:65535 KB 难度:1 描写叙述 如今输入一个正整数k,找到全部的正整数x>=y,使得1/k=1/x+1/y. 输入 第一行输入一个整数 ...

  4. [Android Pro] android root权限破解分析

    许 多机友新购来的Android机器没有破解过Root权限,无法使用一些需要高权限的软件,以及进行一些高权限的操作,其实破解手机Root权限是比较简 单及安全的,破解Root权限的原理就是在手机的/s ...

  5. Hydra 无法爆破SSH 解决办法

    今天测试ssh爆破,发现使用hydra有些问题,windows版本没有协议支持其他的貌似都可以,kali本身也有hydra环境但是也会出现问题,所以就搜了一些资料贴在这里,当然这也是我测试过的,重新编 ...

  6. 百度、淘宝、腾讯三大巨头HTML页面有何高招?

    众所周知用html5新增标签布局不光可以使页面更具有可读性,也能使代码更清晰规范,但是兼容性成为了首要的问题,如何解决也是问题的关键. [兼容HTML5方案] 百度贴吧,百度图片的实现: <!- ...

  7. 详解vue父组件传递props异步数据到子组件的问题

    案例一 父组件parent.vue // asyncData为异步获取的数据,想传递给子组件使用 <template> <div> 父组件 <child :child-d ...

  8. IDEA下clean Maven项目

    如何调试出窗口: 点击菜单栏View->Tool Windows->Maven projects ♦如下图,选中之后.点击绿色三角形就可以clean了

  9. WeifenLuo.WinFormsUI.Docking添加关闭功能

    /****************************************************************** * 创建人:HTL * 创建时间:2014-7-8 15:37: ...

  10. scala "←" "<-"

    程序里看到"←"符号 (for { routee ← valueHolder.routee } yield routee).toVector 找遍scala的操作符表都没找到,回头 ...