bzoj 1856 卡特兰数
复习了一下卡特兰数。。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg
using namespace std; const int N = 2e6 + ;
const int M = 5e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const int B = 1e5; int n, m;
LL inv[N], comb[N]; void init(int n) {
inv[] = ;
for(int i = ; i <= n; i++)
inv[i] = (mod-mod/i) * inv[mod%i] % mod;
comb[] = ;
for(int i = ; i <= n; i++)
comb[i] = comb[i - ] * (n - i + ) % mod * inv[i] % mod;
} int main() {
scanf("%d%d", &n, &m);
init(n + m);
if(m > n) {
puts("");
} else {
printf("%lld\n", (comb[m] - comb[m - ] + mod) % mod);
}
return ;
}
bzoj 1856 卡特兰数的更多相关文章
- bzoj 1485 卡特兰数 + 分解因子
思路:打表可以看出是卡特兰数,但是模数不一定是素数,所以需要分解一下因数. #include<bits/stdc++.h> #define LL long long #define fi ...
- BZOJ 1485 卡特兰数 数学
思路: 通过打表观察 这是个卡特兰数 但是它mod的数不是质数 怎么办呢 把所有数分解质因数好了 线性筛出mindiv 顺着mindiv分解质因数 复杂度$O(nlogn)$ //By Sirius ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数
因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...
- bzoj 1485 [HNOI2009]有趣的数列 卡特兰数
把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...
- 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)
2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...
- 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精
这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...
- 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数
这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...
- bzoj 1856 组合
这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...
随机推荐
- 相同内容 yaml 与 json 格式对比
关联数组: yaml person: name: 张三 age: 24 json { "person": { "name": "张三", . ...
- django 配置xamdin遇到的坑
是在 Django==1.11.7 这个版本下配置的,需要说明的是,不是通过pip install xadmin方式安装的 在github上下载的xadmin源码包,需要在项目的根目录下创建extra ...
- [DeeplearningAI笔记]序列模型1.7-1.9RNN对新序列采样/GRU门控循环神经网络
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.7对新序列采样 基于词汇进行采样模型 在训练完一个模型之后你想要知道模型学到了什么,一种非正式的方法就是进行一次新序列采 ...
- Bootstrap自学笔记
<!DOCTYPE html><html lang="zh-cn"> <head> <meta charset="utf-8&q ...
- Linux查找后执行命令
find . -name '*.jsp' -type f -print -exec rm -rf {} \; 在当前目录下找到jsp文件并删除.
- stat命令--文件权限属性设置
stat命令文件权限属性设置 stat命令用于显示文件的状态信息. stat命令的输出信息比ls命令的输出信息要更详细. 语法 stat(选项)(参数) 选项 -L:支持符号连接: -f:显示文件系统 ...
- dotnet core 实践——日志组件Serilog
前几天把基于quartz.net的部分项目代码移植到了dotnet core ,但是没增加日志功能,原因是没找到合适的组件. 今天终于找到了Serilog: https://github.com/s ...
- js写弹窗
1.先来看弹窗的模样 点击“弹出窗口”后会弹出下面窗口 2.下面是实现弹出窗口的代码,其中引入的jquery一般自己有,没有的话可以从网上下载.tanchuang.js和tanchuang.css写在 ...
- laravel判断是否post传输
可以用post传输判断form表单是否有值post传过来: if($request->isMethod('post')){ // 要执行的代码 }通过 Request 对象的 isMethod ...
- Metasploit 进阶
本文是"T00LS Metasploit(第二季)"的文档版,是个人在观看视频动手操作的一个记录,仅供学习.文中会介绍Metasploit的一些基本使用:主要包括远程代码执行.MI ...