bzoj 1856 卡特兰数
复习了一下卡特兰数。。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
#define y1 skldjfskldjg
#define y2 skldfjsklejg
using namespace std; const int N = 2e6 + ;
const int M = 5e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const int B = 1e5; int n, m;
LL inv[N], comb[N]; void init(int n) {
inv[] = ;
for(int i = ; i <= n; i++)
inv[i] = (mod-mod/i) * inv[mod%i] % mod;
comb[] = ;
for(int i = ; i <= n; i++)
comb[i] = comb[i - ] * (n - i + ) % mod * inv[i] % mod;
} int main() {
scanf("%d%d", &n, &m);
init(n + m);
if(m > n) {
puts("");
} else {
printf("%lld\n", (comb[m] - comb[m - ] + mod) % mod);
}
return ;
}
bzoj 1856 卡特兰数的更多相关文章
- bzoj 1485 卡特兰数 + 分解因子
思路:打表可以看出是卡特兰数,但是模数不一定是素数,所以需要分解一下因数. #include<bits/stdc++.h> #define LL long long #define fi ...
- BZOJ 1485 卡特兰数 数学
思路: 通过打表观察 这是个卡特兰数 但是它mod的数不是质数 怎么办呢 把所有数分解质因数好了 线性筛出mindiv 顺着mindiv分解质因数 复杂度$O(nlogn)$ //By Sirius ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数
因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...
- bzoj 1485 [HNOI2009]有趣的数列 卡特兰数
把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...
- 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)
2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...
- 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精
这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...
- 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数
这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...
- bzoj 1856 组合
这道题有些类似卡特兰数的其中一种证明,总方案数是c(n+m,n),点(m,n)对应y=x-1对称点为(n+1,m-1),所以答案为c(n+m,n)-c(n+m,n+1). 反思:开始坐标轴画错了,结果 ...
随机推荐
- laravel 5.1 单元测试 Cannot modify header information 错误
运行phpunit的时候加上参数 --stderr ./vendor/bin/phpunit --stderr
- mac下php添加openssl扩展
进入php源码目录 cd ext/openssl mv config0.m4 config.m4 phpize && ./configure && make & ...
- STL源码分析-list
http://note.youdao.com/noteshare?id=81492dc45602618344edc838ef104581
- Codeforces 148 D Bag of mice
D. Bag of mice http://codeforces.com/problemset/problem/148/D time limit per test 2 seconds memory l ...
- CF540 B 贪心
坑在B题是常态,弱智的日常. 是找中位数不是平均值. 慌了,乱写了 出了一塌糊涂的ZZ代码 特记一下 /** @Date : 2017-08-27 17:25:11 * @FileName: B.cp ...
- 如何修改 winserver2008 密码策略为简单密码
对于不在域中的计算机, 可以运行: gpedit.msc , 如下图: 对于在域中的计算机, 应该: 如不能生效, 可重启再试.
- 【BZOJ做题记录】07.07~?
在NOI一周前重开一个坑 最后更新时间:7.08 07:38 7.06 下午做的几道CQOI题: BZOJ1257: [CQOI2007]余数之和sum:把k mod i写成k-k/i*i然后分段求后 ...
- 20155117 王震宇 2006-2007-2 《Java程序设计》第四周学习总结
教材学习内容总结 继承(inheritance) 继承是面向对象软件技术当中的一个概念.继承可以使得子类别具有父类别的各种属性和方法,避免了重复的行为定义.在子类别继承父类别的同时,可以重新定义某些属 ...
- 【总结】前端必须收藏的CSS3动效库!!!
现在的网站和App的设计中越来越重视用户体验,而优秀的动效则能使你的应用更具交互性,从而吸引更多用户的使用. 如果你对CSS3中定义动效还不熟练,或希望采用更加简单直接的方式在你的应用中引入动效的话, ...
- 根据 plist 还原 图片
1. python 环境自己配置(支持windows Mac ) 2. 把所有的 plist 和 大图片放到一个目录下 3.如果添加了 系统环境变量 就直接双击运行脚本,如果没有设置,把脚本拽到DO ...