Destroy Transportation system

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
http://acm.hdu.edu.cn/showproblem.php?pid=4940

Problem Description
Tom is a commander, his task is destroying his enemy’s
transportation system.

Let’s represent his enemy’s transportation system
as a simple directed graph G with n nodes and m edges. Each node is a city and
each directed edge is a directed road. Each edge from node u to node v is
associated with two values D and B, D is the cost to destroy/remove such edge, B
is the cost to build an undirected edge between u and v.

His enemy can
deliver supplies from city u to city v if and only if there is a directed path
from u to v. At first they can deliver supplies from any city to any other
cities. So the graph is a strongly-connected graph.

He will choose a
non-empty proper subset of cities, let’s denote this set as S. Let’s denote the
complement set of S as T. He will command his soldiers to destroy all the edges
(u, v) that u belongs to set S and v belongs to set T.

To destroy an
edge, he must pay the related cost D. The total cost he will pay is X. You can
use this formula to calculate X:

After that, all the edges from S to
T are destroyed. In order to deliver huge number of supplies from S to T, his
enemy will change all the remained directed edges (u, v) that u belongs to set T
and v belongs to set S into undirected edges. (Surely, those edges exist because
the original graph is strongly-connected)

To change an edge, they must
remove the original directed edge at first, whose cost is D, then they have to
build a new undirected edge, whose cost is B. The total cost they will pay is Y.
You can use this formula to calculate Y:

At last, if Y>=X, Tom will
achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time
to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks
you if there is a set S, such that Y<X. If such set exists, he will feel
unhappy, because he must choose set S carefully, otherwise he will become very
happy.

 
Input
There are multiply test cases.

The first line
contains an integer T(T<=200), indicates the number of cases.

For
each test case, the first line has two numbers n and m.

Next m lines
describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200,
2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)

The meaning of
all characters are described above. It is guaranteed that the input graph is
strongly-connected.

 
Output
For each case, output "Case #X: " first, X is the case
number starting from 1.If such set doesn’t exist, print “happy”, else print
“unhappy”.
 
Sample Input
2
3 3
1 2 2 2
2 3 2 2
3 1 2 2
3 3
1 2 10 2
2 3 2 2
3 1 2 2
 
Sample Output
Case #1: happy
Case #2: unhappy
 
Hint

In first sample, for any set S, X=2, Y=4. In second sample. S= {1}, T= {2, 3}, X=10, Y=4.

 
题意:给出一个有向强连通图,每条边有两个值:破坏该边的代价a 和 把该边建成无向边的代价b
问是否存在一个集合S和S的补集T,满足 S到T的割边的 a的总和 > T到S的 割边的 a+b的总和
若存在 输出unhappy, 不存在,输出happy 以a为下界,a+b为上界,判断是否存在无源汇上下界可行流
因为如果存在,流量总和>=下界,<=上界
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define N 210
#define M 15000
using namespace std;
int m,n,src,dec,sum,tot;
int a[N];
int front[N],to[M],nextt[M],cap[M];
int lev[N],cur[N];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v; nextt[tot]=front[u]; front[u]=tot; cap[tot]=w;
to[++tot]=u; nextt[tot]=front[v]; front[v]=tot; cap[tot]=;
}
bool bfs()
{
for(int i=src;i<=dec;i++) cur[i]=front[i],lev[i]=-;
while(!q.empty()) q.pop();
lev[src]=;
q.push(src);
int now;
while(!q.empty())
{
now=q.front(); q.pop();
for(int i=front[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]==-)
{
lev[to[i]]=lev[now]+;
if(to[i]==dec) return true;
q.push(to[i]);
}
}
return false;
}
int dfs(int now,int flow)
{
if(now==dec) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]>lev[now])
{
delta=dfs(to[i],min(flow-rest,cap[i]));
if(delta)
{
cap[i]-=delta; cap[i^]+=delta;
rest+=delta; if(rest==flow) break;
}
}
if(rest!=flow) lev[now]=-;
return rest;
}
int dinic()
{
int tmp=;
while(bfs()) tmp+=dfs(src,2e9);
return tmp;
}
int main()
{
int T;
scanf("%d",&T);
for(int k=;k<=T;k++)
{
memset(a,,sizeof(a));
memset(front,,sizeof(front));
sum=; tot=;
scanf("%d%d",&n,&m);
src=; dec=n+;
int u,v,c,d;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&d);
a[v]+=c; a[u]-=c;
add(u,v,d);
}
for(int i=;i<=n;i++)
if(a[i]<) add(i,dec,-a[i]);
else if(a[i]>) {add(src,i,a[i]); sum+=a[i];}
if(dinic()==sum) printf("Case #%d: happy\n",k);
else printf("Case #%d: unhappy\n",k);
}
}
 

hdu 4940 Destroy Transportation system (无源汇上下界可行流)的更多相关文章

  1. HDU 4940 Destroy Transportation system(无源汇上下界网络流)

    Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...

  2. hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )

    题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...

  3. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  4. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  5. ZOJ2314 Reactor Cooling(无源汇上下界可行流)

    The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...

  6. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  7. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  8. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  9. poj2396有源汇上下界可行流

    题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...

随机推荐

  1. Maya脚本——重命名物体的名称

    该脚本用于将图1中的命名变更为图2中的,把maya中使用相同名称的物体都重命名为不同的名称. 重命名的规则是:组名_原名称_序号 查阅了maya的官方手册:http://download.autode ...

  2. ant build.xml 解释!

    Ant的概念  Make命令是一个项目管理工具,而Ant所实现功能与此类似.像make,gnumake和nmake这些编译工具都有一定的缺陷,但是Ant却克服了这些工具的缺陷.最初Ant开发者在开发跨 ...

  3. mac下mysql5.7.10密码问题

    mysql5.7.10刚安装好,会生成一个随机密码. 如果没记住这个随机密码,那么到mysql/bin/下执行mysql_secure_installation命令 按照提示重置密码和其他选项. ps ...

  4. Spring 中常用注解原理剖析

    前言 Spring 框架核心组件之一是 IOC,IOC 则管理 Bean 的创建和 Bean 之间的依赖注入,对于 Bean 的创建可以通过在 XML 里面使用 <bean/> 标签来配置 ...

  5. apache server-status配置

    引言 自己配置LAMP服务器时(xwamp),获取状态信息出现错误: You don't have permission to access /server-status on this server ...

  6. bzoj4184shallot

    题意 给出一个初始为空的数字集合,每次添加一个数字/删除一个存在的数字,然后输出选出一些数进行异或能够得到的最大数值.操作次数<=500000,数字大小<2^31 分析 看上去我们只要写一 ...

  7. Testng 运行Cannot find class in classpath

    用Testng运行多个class,结果报: org.testng.TestNGException: Cannot find class in classpath: Salesman     at or ...

  8. Liunx 和 Win中的软链接详解

    用过Linux的朋友都知道linux中有软链接的概念,可以通过ln命令创建到目录或文件的软链接,软链接的好处就是可以让一个目录或文件有多个入口但保持单一物理位置,方便应用和管理.    1.命令格式: ...

  9. C++解析(28):异常处理

    0.目录 1.C语言异常处理 2.C++中的异常处理 3.小结 1.C语言异常处理 异常的概念: 程序在运行过程中可能产生异常 异常(Exception)与 Bug 的区别 异常是程序运行时可预料的执 ...

  10. 深入理解JVM一垃圾回收算法

    我们都知道java语言与C语言最大的区别就是内存自动回收,那么JVM是怎么控制内存回收的,这篇文章将介绍JVM垃圾回收的几种算法,从而了解内存回收的基本原理. 一.stop the world 在介绍 ...