hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
http://acm.hdu.edu.cn/showproblem.php?pid=4940
transportation system.
Let’s represent his enemy’s transportation system
as a simple directed graph G with n nodes and m edges. Each node is a city and
each directed edge is a directed road. Each edge from node u to node v is
associated with two values D and B, D is the cost to destroy/remove such edge, B
is the cost to build an undirected edge between u and v.
His enemy can
deliver supplies from city u to city v if and only if there is a directed path
from u to v. At first they can deliver supplies from any city to any other
cities. So the graph is a strongly-connected graph.
He will choose a
non-empty proper subset of cities, let’s denote this set as S. Let’s denote the
complement set of S as T. He will command his soldiers to destroy all the edges
(u, v) that u belongs to set S and v belongs to set T.
To destroy an
edge, he must pay the related cost D. The total cost he will pay is X. You can
use this formula to calculate X:
After that, all the edges from S to
T are destroyed. In order to deliver huge number of supplies from S to T, his
enemy will change all the remained directed edges (u, v) that u belongs to set T
and v belongs to set S into undirected edges. (Surely, those edges exist because
the original graph is strongly-connected)
To change an edge, they must
remove the original directed edge at first, whose cost is D, then they have to
build a new undirected edge, whose cost is B. The total cost they will pay is Y.
You can use this formula to calculate Y:
At last, if Y>=X, Tom will
achieve his goal. But Tom is so lazy that he is unwilling to take a cup of time
to choose a set S to make Y>=X, he hope to choose set S randomly! So he asks
you if there is a set S, such that Y<X. If such set exists, he will feel
unhappy, because he must choose set S carefully, otherwise he will become very
happy.
The first line
contains an integer T(T<=200), indicates the number of cases.
For
each test case, the first line has two numbers n and m.
Next m lines
describe each edge. Each line has four numbers u, v, D, B.
(2=<n<=200,
2=<m<=5000, 1=<u, v<=n, 0=<D, B<=100000)
The meaning of
all characters are described above. It is guaranteed that the input graph is
strongly-connected.
number starting from 1.If such set doesn’t exist, print “happy”, else print
“unhappy”.
In first sample, for any set S, X=2, Y=4. In second sample. S= {1}, T= {2, 3}, X=10, Y=4.
题意:给出一个有向强连通图,每条边有两个值:破坏该边的代价a 和 把该边建成无向边的代价b
问是否存在一个集合S和S的补集T,满足 S到T的割边的 a的总和 > T到S的 割边的 a+b的总和
若存在 输出unhappy, 不存在,输出happy 以a为下界,a+b为上界,判断是否存在无源汇上下界可行流
因为如果存在,流量总和>=下界,<=上界
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define N 210
#define M 15000
using namespace std;
int m,n,src,dec,sum,tot;
int a[N];
int front[N],to[M],nextt[M],cap[M];
int lev[N],cur[N];
queue<int>q;
void add(int u,int v,int w)
{
to[++tot]=v; nextt[tot]=front[u]; front[u]=tot; cap[tot]=w;
to[++tot]=u; nextt[tot]=front[v]; front[v]=tot; cap[tot]=;
}
bool bfs()
{
for(int i=src;i<=dec;i++) cur[i]=front[i],lev[i]=-;
while(!q.empty()) q.pop();
lev[src]=;
q.push(src);
int now;
while(!q.empty())
{
now=q.front(); q.pop();
for(int i=front[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]==-)
{
lev[to[i]]=lev[now]+;
if(to[i]==dec) return true;
q.push(to[i]);
}
}
return false;
}
int dfs(int now,int flow)
{
if(now==dec) return flow;
int rest=,delta;
for(int & i=cur[now];i;i=nextt[i])
if(cap[i]>&&lev[to[i]]>lev[now])
{
delta=dfs(to[i],min(flow-rest,cap[i]));
if(delta)
{
cap[i]-=delta; cap[i^]+=delta;
rest+=delta; if(rest==flow) break;
}
}
if(rest!=flow) lev[now]=-;
return rest;
}
int dinic()
{
int tmp=;
while(bfs()) tmp+=dfs(src,2e9);
return tmp;
}
int main()
{
int T;
scanf("%d",&T);
for(int k=;k<=T;k++)
{
memset(a,,sizeof(a));
memset(front,,sizeof(front));
sum=; tot=;
scanf("%d%d",&n,&m);
src=; dec=n+;
int u,v,c,d;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&d);
a[v]+=c; a[u]-=c;
add(u,v,d);
}
for(int i=;i<=n;i++)
if(a[i]<) add(i,dec,-a[i]);
else if(a[i]>) {add(src,i,a[i]); sum+=a[i];}
if(dinic()==sum) printf("Case #%d: happy\n",k);
else printf("Case #%d: unhappy\n",k);
}
}
hdu 4940 Destroy Transportation system (无源汇上下界可行流)的更多相关文章
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...
- ZOJ2314 Reactor Cooling(无源汇上下界可行流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- zoj2314 无源汇上下界可行流
题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
- poj2396有源汇上下界可行流
题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...
随机推荐
- 20172311-ASL测试 2018-1938872补充博客
20172311-ASL测试 2018-1938872补充博客 课程:<程序设计与数据结构> 班级: 1723 姓名: 赵晓海 学号: 20172311 实验教师:王志强老师 测试日期:2 ...
- Lucene 常用名词解析
索引的创建:IndexWriter: 用于创建索引Directory: 这个可以用来定义我们的索引是存放在内存中还是在硬盘上Analyzer: 分词器 有几种()这个地方需要好好解释下Document ...
- caffe环境搭建笔记
首先安装以下库或软件 sudo apt-get install gitsudo apt-get install libprotobuf-dev libleveldb-dev l ...
- sublime text 多行代码注释快捷键
多行选择后按下ctrl+/ 选择类 Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本. Alt+F3 选中文本按下快捷键,即可一次性选择全部的相同文本进行同时编辑.举个栗子:快速选中 ...
- 手机uc不支持伪元素使用animation动画;移动端background-attachment:fixed不兼容性
20170503 1.手机uc不支持伪元素使用animation动画 (暂未解决) 2.移动端background-attachment:fixed不兼容性,没有任何效果, element:befor ...
- 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分
题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...
- Linux进入单用户模式(passwd root修改密码)
进入单用户模式——passwd root修改密码 1.在grub 页面输入a,进入修改内核模式 2.在内核的结尾“/”,输入空格,在输入single,回车 3.启动系统,进入单用户模式 4.Passw ...
- 【BZOJ4200】【NOI2015】小园丁与老司机(动态规划,网络流)
[BZOJ4200][NOI2015]小园丁与老司机(动态规划,网络流) 题面 BZOJ权限题,洛谷链接 题解 一道二合一的题目 考虑第一问. 先考虑如何计算六个方向上的第一个点. 左右上很好考虑,只 ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- MapReduce(三) 典型场景(一)
一.mapreduce多job串联 1.需求 一个稍复杂点的处理逻辑往往需要多个 mapreduce 程序串联处理,多 job 的串联可以借助 mapreduce 框架的 JobControl 实现 ...