目录

1 问题描述

2 解决方案

 


1 问题描述

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source

 

2 解决方案

具体代码如下:

package com.liuzhen.practice;

import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack; public class Main {
public static int n; //给定图的顶点数
public static int count; //记录遍历次序
public static int[] DFN;
public static int[] Low;
public static int[] parent; //parent[i] = j,表示顶点i的直接父母顶点为j
public static Stack<Integer> stack;
public static ArrayList<edge>[] map;
public static ArrayList<edge> ans; //存储给定图中为桥的边 static class edge {
public int a; //边的起点
public int b; //边的终点
public boolean used; //表示边是否已被访问 public edge(int a, int b) {
this.a = a;
this.b = b;
this.used = false;
}
} @SuppressWarnings("unchecked")
public void init() {
count = 0;
DFN = new int[n + 1];
Low = new int[n + 1];
parent = new int[n + 1];
stack = new Stack<Integer>();
map = new ArrayList[n + 1];
ans = new ArrayList<edge>();
for(int i = 1;i <= n;i++) {
DFN[i] = -1;
Low[i] = -1;
parent[i] = -1;
map[i] = new ArrayList<edge>();
}
} public void TarJan(int start, int father) {
DFN[start] = count++;
Low[start] = DFN[start];
parent[start] = father;
stack.push(start);
for(int i = 0;i < map[start].size();i++) {
edge temp = map[start].get(i);
if(temp.used)
continue;
int t = temp.b;
for(int p = 0;p < map[t].size();p++) {
if(map[t].get(p).b == temp.a) {
map[t].get(p).used = true;
break;
}
}
temp.used = true;
int j = temp.b;
if(DFN[j] == -1) {
TarJan(j, start);
Low[start] = Math.min(Low[start], Low[j]);
if(Low[j] > DFN[start]) //当边temp为割边(或者桥)时
ans.add(temp);
} else if(j != parent[start]) { //当j不是start的直接父母节点时
Low[start] = Math.min(Low[start], DFN[j]);
}
}
} public void getResult() {
for(int i = 1;i <= n;i++) {
if(parent[i] == -1)
TarJan(i, 0);
}
int[] degree = new int[n + 1];
for(int i = 0;i < ans.size();i++) {
int a = ans.get(i).a;
int b = ans.get(i).b;
degree[a]++;
degree[b]++;
}
int result = 0;
for(int i = 1;i <= n;i++) {
if(degree[i] == 1)
result++;
}
result = (result + 1) / 2;
System.out.println(result);
return;
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
n = in.nextInt();
int m = in.nextInt();
test.init();
for(int i = 0;i < m;i++) {
int a = in.nextInt();
int b = in.nextInt();
map[a].add(new edge(a, b));
map[b].add(new edge(b, a));
}
test.getResult();
}
}

运行结果:

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
2

参考资料:

1.pku 3177 (3352) Redundant Paths

2. PKU3352(Road Construction)-图的双连通,桥

算法笔记_150:图论之双连通及桥的应用(Java)的更多相关文章

  1. 算法笔记_149:图论之桥的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 1310 One-way traffic In a certain town there are n intersections connected ...

  2. 学习Java 以及对几大基本排序算法(对算法笔记书的研究)的一些学习总结(Java对算法的实现持续更新中)

    Java排序一,冒泡排序! 刚刚开始学习Java,但是比较有兴趣研究算法.最近看了一本算法笔记,刚开始只是打算随便看看,但是发现这本书非常不错,尤其是对排序算法,以及哈希函数的一些解释,让我非常的感兴 ...

  3. 算法笔记_041:寻找和为定值的多个数(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 输入两个整数n和sum,要求从数列1,2,3,...,n中随意取出几个数,使得它们的和等于sum,请将其中所有可能的组合列出来. 2 解决方案 上述问题 ...

  4. 图论--边双连通V-DCC缩点

    // tarjan算法求无向图的割点.点双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...

  5. 算法笔记_119:蓝桥杯第六届省赛(Java语言A组)试题解答

     目录 1 熊怪吃核桃 2 星系炸弹 3 九数分三组 4 循环节长度 5 打印菱形 6 加法变乘法 7 牌型种数 8 移动距离 9 垒骰子 10 灾后重建   前言:以下试题解答代码部分仅供参考,若有 ...

  6. 算法笔记_056:蓝桥杯练习 未名湖边的烦恼(Java)

    目录 1 问题描述 2 解决方案 2.1 递归法 2.2 递推法   1 问题描述 问题描述 每年冬天,北大未名湖上都是滑冰的好地方.北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰 ...

  7. 算法笔记_204:第四届蓝桥杯软件类决赛真题(Java语言C组)

    目录 1 好好学习 2 埃及分数 3 金蝉素数 4 横向打印二叉树 5 危险系数 6 公式求值   前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 好好学习 汤姆跟爷爷来中国旅游.一天,他帮助中国的 ...

  8. 算法笔记_201:第三届蓝桥杯软件类决赛真题(Java本科)

    目录 1 数量周期 2 提取子串 3 源码变换 4 古代赌局 5 火柴游戏   前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 数量周期 [结果填空](满分9分) 复杂现象背后的推动力,可能是极其简 ...

  9. 算法笔记_206:第五届蓝桥杯软件类决赛真题(Java语言A组)

    目录 1 海盗分金币 2 六角幻方 3 格子放鸡蛋 4 排列序数 5 幂一矩阵 6 供水设施    前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 海盗分金币 有5个海盗,相约进行一次帆船比赛. 比 ...

随机推荐

  1. FFT(快速傅里叶变换)

    学习了FFT用来求多项式的乘法,看了算导上的介绍,上面讲的非常明白,概括一下FFT的原理就是,我们在计算多项式的乘法时,如果暴力模拟的话是n^2 复杂度的,就像小学学的竖式乘法一样,比如一个n位数乘上 ...

  2. [BOI2004]Sequence

    题面描述 给定整数数组$a_1,a_2,a_3...a_n$,求递增数组$b_1,b_2,b_3...b_n$ 使得$|a_1 - b_1| + |a_2 - b_2| + ... + |a_n - ...

  3. [BZOJ 2821] 作诗

    Link: BZOJ 2821 传送门 Solution: 一道类似区间众数的经典分块 由于个数为偶数这样的条件不能支持快速合并 因此要先$O(n*sqrt(n))$预处理出$pre[i][j]$表示 ...

  4. bzoj 1115: [POI2009]石子游戏Kam -- 博弈论

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...

  5. [转]Intel haxm安装失败问题解决

    在安装Intel haxm为安卓模拟器加速时,会遇到提示VT-X未开启问题,问题提示如下图 工具/原料 Intel haxm 安卓模拟器 方法/步骤 1 确认你的处理器是否是Intel的,如果是AMD ...

  6. HDU 5305 Friends dfs

    Friends 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5305 Description There are n people and m pa ...

  7. 什么是 Backbone.js

    Backbone.js 是一个在JavaScript环境下的 模型-视图-控制器 (MVC) 框架.任何接触较大规模项目的开发人员一定会苦恼于各种琐碎的事件回调逻辑.以及金字塔般的代码.而且,在传统的 ...

  8. iOS程序的启动图片图标规范

     

  9. android启动之SystemServer启动

    SystemServer是Android系统的核心,APK应用中可以直接交互的大部分系统服务都在该进程中执行,常见的比方WindowManagerServer(Wms).ActivityManager ...

  10. Are you sure your NDK_MODULE_PATH variable is properly defined?(2)

    Are you sure your NDK_MODULE_PATH variable is properly defined? STEP1:   MIND: 明确NDK_MODULE_PATH概念ht ...